首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E-ααT,其中α为n维非零列向量.证明: (1)A2=A的充分必要条件是α为单位向量; (2)当α是单位向量时A为不可逆矩阵.
设A=E-ααT,其中α为n维非零列向量.证明: (1)A2=A的充分必要条件是α为单位向量; (2)当α是单位向量时A为不可逆矩阵.
admin
2018-05-22
75
问题
设A=E-αα
T
,其中α为n维非零列向量.证明:
(1)A
2
=A的充分必要条件是α为单位向量;
(2)当α是单位向量时A为不可逆矩阵.
选项
答案
(1)令α
T
α=k,则A
2
=(E-αα
T
)(E-αα
T
)=E-2αα
T
+kαα
T
,因为α为非零向量,所以αα
T
≠o,于是A
2
=A的充分必要条件是k=1,而α
T
α=|α|
2
,所以A
2
=A的充要条件是α为单位向量. (2)当α是单位向量时,由A
2
=A得r(A)+r(E-A)=n,因为E-A=αα
T
≠O,所以r(E-A)≥1,于是r(A)≤n-1<n,故A是不可逆矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ESk4777K
0
考研数学二
相关试题推荐
(2010年试题,1)函数的无穷间断点数为().
(2007年试题,二)二阶常系数非齐次线性微分方程y’’一4y’+3y=2e2x的通解为y=__________.
(2004年试题,一)微分方程(y+x2)dx一2xdy=0满足的特解为_________.
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)证明至少存在一点ζ∈(1,3),使得φ’’(η)
(2010年试题,21)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且证明:存在使得f’(ξ)+f’(η)=ξ2+η2
(2011年试题,三)如图1—3—2,一容器的内侧是由图中曲线y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成.(I)求容器的容积;(Ⅱ)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为1
(2010年试题,14)设A,B为三阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=__________.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组的系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明向量组α,Aα,…,Am-1α线性无关.
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
随机试题
质量检验
A.子宫托B.针灸治疗C.阴道前后壁修补术D.阴道纵隔形成术(LeF0n手术)E.阴道子宫全切术及阴道前后壁修补术患者40岁,子宫Ⅲ度脱垂及阴道前后壁膨出。应首选的治疗措施是()
葡萄胎患者清宫后最理想的避孕方法是
在完全市场经济条件下,货币均衡最主要的实现机制是()。
为应对新冠肺炎疫情,我国出台了一系列政策举措,帮助企业和个体工商户减负纾困,促进复工复产。下列哪一选项不属于我国在支持复工复产方面的优惠政策:
下列选项中,与“履亩而税”相一致的做法中不包括()
已知二维随机变量(X,Y)的概率密度为(Ⅰ)求(U,V)的概率分布;(Ⅱ)求U和V的相关系数ρ.
A.MainResultsofRecentResearches.B.PopularDoubtabouttheNewView.C.EffectofEnvironmentonIntelligence.D.Intellig
一名雇员就职于一家公司,一个公司有多个雇员。则实体公司和实体雇员之间的联系是
Stampsareusedfor______letters.
最新回复
(
0
)