首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设 (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2014-01-26
86
问题
设
(1)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(2)对(1)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
[详解1](1)解方程Aξ
2
=ξ
1
, [*] 由于[*],取x
2
为自由未知量,由x
2
=0得特解为[*]。 取x
2
=1得对应齐次方程组的基础解系为[*]。 故所求ξ
2
=k
2
η+η
*
=k
1
[*],其中k
1
为任意常数. [*] 解得[*] (2)由于|ξ
1
,ξ
2
,ξ
3
|=[*],故ξ
1
,ξ
2
,ξ
3
线性无关. [详解2](1)解方程 Aξ
2
=ξ
1
, [*] 由于[*],取x
3
自由未知量,由x
3
=0得特解为[*], 取x
3
=1得对应齐次方程组的基础解系为[*], 故所求 ξ
2
=k
1
η+η
*
=k
1
[*],其中k
1
为任意常数. 解得[*],其中k
1
,k
2
为任意常数. (2)设存在数k
1
,k
2
,k
3
使得 k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
=0 ① 由题设可得Aξ
1
=0, ①式两端左乘A得 k
2
Aξ
2
+k
3
Aξ
3
=0,即 k
1
ξ
1
+k
3
ξ
3
=0 ② ②式两端左乘A得 k
3
Aξ
3
=0,即 k
3
ξ
3
=0,于是 k
3
=0, 将k
3
=0代入②式得 k
2
ξ
1
=0,故 k
2
=0,将k
2
=K
3
=k
3
=0代入①式得 k
1
=0, 从而ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/am34777K
0
考研数学二
相关试题推荐
(01年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于【】
[2010年]设存在正交矩阵Q使QTAQ为对角矩阵.若Q的第1列为求a,Q.
(2007年)设二元函数计算二重积分,其中D={(x,y)||x|+|y|≤2).
(2009年)求二元函数f(x,y)=x2(2+y2)+ylny的极值。
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAN=0,必有()
(06年)设函数f(χ)在χ=0处连续,且=1,则
(91年)曲线y=
[2018年]下列函数中,在x=0处不可导的是()
(2015年)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q为该商品的需求量,P为价格,MC为边际成本,η为需求弹性(η>0)。(I)证明定价模型为(Ⅱ)若该商品的成本函数为C(Q)=1600+Q2,需求函数为Q=40一P,试由(I)中的定
随机试题
Pickoutfiveappropriateexpressionsfromtheeightchoicesbelowandcompletethefollowingdialoguebyblackeningthecorresp
性大寒,专泻肺中水饮及痰火而平喘咳的药物为
男,48岁。一年来每于剧烈活动时或饱餐后发作剑突下疼痛,向咽部放射,持续数分钟可自行缓解。2周来发作频繁且有夜间睡眠中发作。2小时来疼痛剧烈,不能缓解,向胸部及后背部放射。伴憋闷,大汗。首选的治疗方法是
氨苄西林主要用于治疗()。
某爆破物品贸易公司具有进口民用爆炸物品的资质,其中一批民用爆炸物品未按规定进行登记标识就销售给用户,根据《民用爆炸物品安全管理条例》,对该贸易公司应处以罚款的数额是()
股票价格指数与经济周期变动的关系是()。
He_____thewashingonSundays.He____itonSaturdays.
[*]
Doyouknowwhoinvented______firsttelephone,by______way?
TherecentsurveycarriedoutbytheLaborandEmploymentMinistry______thattheaveragepersonspends90,000hoursatworkduri
最新回复
(
0
)