首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设 (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2014-01-26
66
问题
设
(1)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(2)对(1)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
[详解1](1)解方程Aξ
2
=ξ
1
, [*] 由于[*],取x
2
为自由未知量,由x
2
=0得特解为[*]。 取x
2
=1得对应齐次方程组的基础解系为[*]。 故所求ξ
2
=k
2
η+η
*
=k
1
[*],其中k
1
为任意常数. [*] 解得[*] (2)由于|ξ
1
,ξ
2
,ξ
3
|=[*],故ξ
1
,ξ
2
,ξ
3
线性无关. [详解2](1)解方程 Aξ
2
=ξ
1
, [*] 由于[*],取x
3
自由未知量,由x
3
=0得特解为[*], 取x
3
=1得对应齐次方程组的基础解系为[*], 故所求 ξ
2
=k
1
η+η
*
=k
1
[*],其中k
1
为任意常数. 解得[*],其中k
1
,k
2
为任意常数. (2)设存在数k
1
,k
2
,k
3
使得 k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
=0 ① 由题设可得Aξ
1
=0, ①式两端左乘A得 k
2
Aξ
2
+k
3
Aξ
3
=0,即 k
1
ξ
1
+k
3
ξ
3
=0 ② ②式两端左乘A得 k
3
Aξ
3
=0,即 k
3
ξ
3
=0,于是 k
3
=0, 将k
3
=0代入②式得 k
2
ξ
1
=0,故 k
2
=0,将k
2
=K
3
=k
3
=0代入①式得 k
1
=0, 从而ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/am34777K
0
考研数学二
相关试题推荐
考虑一元二次方程χ2+Bχ+C=0,其中B、C分别是将一枚骰子连掷两次先后出现的点数,求该方程有实根的概率p和有重根的概率q.
(88年)过曲线y=χ2(χ≥0)上某点A作一切线.使之与曲线及χ轴围成图形的面积为,求:(1)切点A的坐标.(2)过切点A的切线方程;(3)由上述图形绕z轴旋转而成旋转体体积V.
已知方程=k在区间(0,1)内有实根,确定常数k的取值范围.
(11年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,α
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
(89年)若齐次线性方程组只有零解,则λ应满足的条件是_______.
(2007年)设函数y=y(x)由方程ylny—x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
(14年)证明n阶矩阵相似.
随机试题
下列选项中,关于亲和需要的说法,正确的是()。
企业采取从基层经营单位自下而上,上下结合的方式制定战略,依靠广大管理人员和员工群众实施完善的战略,这种实施战略方式属于()
乙型肝炎病毒的核心部分包含
在砂类土、黏性土中沉桩宜用()法。
下列各项中,符合收入会计要素定义的是()。
根据《中华人民共和国婚姻法》的规定,关于夫妻一方通过自己的劳动或者继承、赠与等途径获得的合法财产,下列说法正确的是( )。
培根在评述中国古代文明的三项成果时说:“这三种东西曾经改变了整个世界的事物面和状态:第一种在文字方面,第二种在战争上,第三种在航海上。”材料中的“三种东西,,是指()。
习近平指出,中华民族伟大复兴的中国梦,“凝聚了几代中国人的夙愿,体现了中华民族和中国人民的整体利益,是每一个中华儿女的共同期盼”。实现中国梦的路径和要求是
有以下程序:main(){charstr[][10]={"China","Beijing"),*P=str;printf("%s\n",p+10);}程序运行后的输出结果是______。
①正君、おばあさんの病気はその後いかがですか。ずっと寝たままでは心配ですね。今年は特別暑いので、父も母も心配しています。②父はおじさんから来た手紙を読んで、ぼくが休みになったら、【R3】________見舞いに連れて行くと言っています。それまで
最新回复
(
0
)