首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。 (Ⅰ)证明:r(A)=2; (Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。 (Ⅰ)证明:r(A)=2; (Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
admin
2018-04-08
71
问题
设3阶矩阵A=(α
1
,α
2
,α
3
)有3个不同的特征值,且α
3
=α
1
+2α
2
。
(Ⅰ)证明:r(A)=2;
(Ⅱ)设β=α
1
+α
2
+α
3
,求方程组Ax=β的通解。
选项
答案
(Ⅰ)因为A有三个不同的特征值,所以A至多只有1个零特征值,故r(A)≥2。 又因为α
3
=α
1
+2α
2
,所以矩阵A的列向量组线性相关,故r(A)≤2。从而r(A)=2。 (Ⅱ)由r(A)=2可知,齐次线性方程组Ax=0的基础解系只有1个解向量。 再由α
3
=α
1
+2α
2
可得,α
1
+2α
2
-α
3
=0,从而可得Ax=0的基础解系为(1,2,-1)
T
。 由β=α
1
+α
2
+α
3
可得,Ax=β的特解为(1,1,1)
T
,所以Ax=β的通解为 k(1,2,-1)
T
+(1,1,1)
T
,其中k∈R。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5lr4777K
0
考研数学一
相关试题推荐
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
已知对于n阶方阵A,存在自然数忌,使得Ak=0.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
利用变换y=f(ex)求微分方程y’’一(2ex+1)y’+e2xy=e3x的通解.
求方程的通解.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设n阶矩阵A的秩为1,试证:存在常数μ,对任意正整数k,使得Ak=μk-1A.
设随机变量X1,X2,X3,X4相互独立,且都服从正态分布N(0,σ2),如果二阶行列式Y=,则σ2=________。
计算下列n阶行列式:
随机试题
下列属于教育法体系第三个层次的是()
患者男性,45岁。溃疡性结肠炎反复发作3年余。拟行肠道99mTc-WBC炎症显像,不属于其临床应用范围的是
磁性制剂主要组成有
《政府采购货物和服务招标投标管理办法》规定,对于该项目的评标报告主要内容不包括()。
(20l0)我国传统住宅采用砖墙承重构筑类型的主要分布地,不包括()。
海关对尚未构成走私罪的违法当事人可给予下列()等行政处罚。
某企业的薪酬水平处于市场的第75个百分位上,这就意味着市场中有()的企业薪酬水平比它要高。
教育机智体现了教师的劳动具有()。
语言学家把若干种有_______________的语言叫亲属语言。
在分布式数据库应用系统中,对全局关系进行分片设计时,下列说法正确的是()。
最新回复
(
0
)