首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( ).
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( ).
admin
2019-06-04
44
问题
已知向量组α
1
,α
2
,α
3
,α
4
线性无关,则下列向量组中线性无关的是( ).
选项
A、α
1
+α
2
,α
2
一α
3
,α
3
一α
4
,α
4
+α
1
B、α
1
+α
2
,α
1
—2α
3
,α
1
+α
2
一α
3
,5α
2
+α
3
C、α
1
+α
2
+α
3
,α
1
一α
2
+α
3
,α
1
+3α
2
+9α
3
D、α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
答案
C
解析
因为
(α
1
+α
2
)一(α
2
一α
3
)一(α
3
一α
4
)一(α
4
+α
1
)=0,
所以向量组(A)线性相关.
若令
β
1
=α
1
+α
2
,β
2
=α
1
—2α
3
,β
3
=α
1
+α
2
—α
3
,β
i
=5α
2
+α
3
.
则β
1
,β
2
,β
3
,β
4
可由α
1
,α
2
,α
3
线性表示,即多数向量可由少数向量线性表示,因此β
1
,β
2
,β
3
,β
4
线性相关,即向量组(B)线性相关.
关于(C),由α
1
,α
2
,α
3
,α
4
线性无关知,α
1
,α
2
,α
3
线性无关.若令
β
1
=α
1
+α
2
+α
3
, β
2
=α
1
-α
2
+α
3
, β
3
=α
1
+3α
2
+9α
3
,
则 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]
因为
是范德蒙行列式,不为0,所以
r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3,
即向量组(C)线性无关,故仅(C)入选.因
[α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
]
=[α
1
,α
2
,α
3
,α
4
]
而右边行列式等于0,故(D)中向量组线性相关.
转载请注明原文地址:https://www.kaotiyun.com/show/zQc4777K
0
考研数学一
相关试题推荐
设总体X的概率密度为其中参数0(0<0<1)未知,X1,X2.…,Xn是来自总体X的简单随机样本,是样本均值.(Ⅰ)求参数θ的矩估汁量;(Ⅱ)判断4是否为θ2的无偏估计量,并说明理由.
设X1,X2,…,Xn(n>2)为来自总体N(0,1)的简单随机样本,X为样本均值,记Yi=Xi-,i=1,2,…,n.求:(Ⅰ)Yi的方差DYi,i=1,2,…,n;(Ⅱ)Y1与Yn的协方差Coy(Y1,Y2).
从正态总体N(3.4,62)中抽取容量为n的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n至少应取多大?[附表]:
设随机变量X的概率密度为令Y=X2,F(χ,y)为二维随机变量(X,Y)的分布函数.求(Ⅰ)Y的概率密度fY(y);(Ⅱ)F(-,4).
设随机变量X的概率密度为求随机变量Y=eX的概率密度fY(y).
设二维随机变量(X,Y)的概率密度为求随机变量Z=X+2Y的分布函数.
设随机变量X的概率密度函数为fx(χ)=,求随机变量Y=1-的概率密度函数fY(y).
设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X和关于Y的边缘分布律中的部分数值,试将其余数值填入表中的空白处.
设矩阵A=,α1,α2,α3为线性无关的三维列向量组。则向量组Aα1,Aα2,Aα3.的秩为_________.
随机试题
问君何能尔,______________。
A.昂丹司琼B.多潘立酮C.二者均可D.二者均不可
对下列哪种类型颈椎病做颈椎牵引有加重的可能
上颌义齿远中游离端基托的颊侧应
所谓“刚体作定轴转动”,指的是刚体运动时有下列中哪种特性?
企业经营管理中的某些不减少企业所有者权益的支出也构成费用。()
郑亲王府所在地,明朝时时谁的府邸?
现代国家的政体形式大多数是()。(2010年单选16)
S市持有驾驶证的人员数量较五年前增加了数十万,但交通死亡事故却较五年前有明显地减少。由此可以得出结论:目前S市驾驶员的驾驶技术熟练程度较五年前有明显的提高。以下各项如果为真,最能削弱上述论证,除了:
Lastyearwasthefourthwarmestsincerecordkeepingbeganinthe1880sand2005couldgodownasthewarmesteverrecorded,NAS
最新回复
(
0
)