首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. 求a的值;
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. 求a的值;
admin
2018-07-31
59
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示.
求a的值;
选项
答案
解 4个3维向量β
1
,β
2
,β
3
,α
i
线性相关(i=1,2,3),若β
1
,β
2
,β
3
线性无关,则α
i
可由β
1
,β
2
,β
3
线性表示(i=1,2,3),这与题设矛盾,于是β
1
,β
2
,β
3
线性相关,从而0=|β
1
,β
2
,β
3
|=[*]=a一5, 于是a=5.此时,α
1
不能由向量组β
1
,β
2
,β
3
线性表示.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/a5g4777K
0
考研数学一
相关试题推荐
[*]
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x—y|.证明:|∫ab|f(x)dx一(b一a)f(a)|≤(b一a)2.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22—2y32,且A*+2E的非零特征值对应的特征向量为α=,求此二次型.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一1的特征向量.(1)求A;(2)求|A*+3E|.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=___________.
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
随机试题
人民政协在我国政治生活中继续发挥重要作用,以下对人民政协理解正确的是()
维生素D的缺乏症主要是佝偻病。()
Cancerisconsideredamoderndisease,thoughitwasnotunknowninancienttimes.(TheconditionwasnamedbytheGreeksfromth
A.带状角膜变性B.边缘角膜变性C.角膜老年环D.大泡性角膜病变E.圆锥角膜由于角膜内皮功能失代偿引起的是
一锅炉房师傅,化学性窒息性气体中毒后皮肤、黏膜呈樱桃红色的原因主要是
下列选项对中国国际经济贸易仲裁委员会叙述错误的是()。
根据《票据法》的规定,见票后定期付款的汇票,持票人应当自出票日起( )内向付款人提示承兑。
电路/分组交换的特点有()。
甲市利源建材公司与钱某签订木材买卖合同,并书面约定本合同一切争议由中国国际经济贸易仲裁委员会仲裁。利源建材公司支付50万元预付款后,因钱某未履约依法解除了合同。钱某一直未将预付款返还,利源建材公司遂提出返还货款的仲裁请求,仲裁庭适用简易程序审理。并作出裁决
PassageThree(1)LondonmaybeEurope’scommercialcapital,butnotallBritonsarethrilledaboutthat.Inapollconduc
最新回复
(
0
)