首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
admin
2019-08-12
86
问题
设有任意两个n维向量组α
1
,α
2
,…,α
m
和β
1
,β
2
,…,β
m
,若存在两组不全为零的数λ
1
,λ
2
,…,λ
m
和k
1
,k
2
,…,k
m
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
-k
1
)β
1
+…+(λ
m
-k
m
)β
m
=0,则
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
C、α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性相关.
答案
D
解析
由题设等式,有λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+k
1
(α
1
-β
1
)+…+k
m
(α
m
-β
m
)=0,因λ
1
,…,λ
m
,k
1
,…,k
m
不全为零,由上式知向量组α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性相关,只有(C)正确.
转载请注明原文地址:https://www.kaotiyun.com/show/wuN4777K
0
考研数学二
相关试题推荐
(98年)设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a一δ,a+δ)时,必有
(90年)已知函数f(x)具有任意阶导数,且f’(x)=[f(x)]2.则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是
(96年)设函数f(x)=(1)写出f(x)的反函数g(x)的表达式;(2)g(x)是否有间断点、不可导点,若有,指出这些点.
(18年)将长为2m的铁丝分成三段。依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
(2015年)设矩阵A=,且A3=O.(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵.求X.
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问t为何值时,向量组α1,α2,α3线性无关?(2)当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α1表示为α1和α2的线性组合.
设A=(aij)3×3是实正交矩阵,且a11=1。b=(1,0,0)T,则线性方程组Ax=b的解是______.
用数列极限的定义证明下列极限:
设f(χ,y)=(1)f(χ,y)在点(0,0)处是否连续?(2)f(χ,y)在点(0,0)处是否可微?
随机试题
(2012年4月)()()不受我国著作权法保护。
A.良附丸合正气天香散加减B.大承气汤加减C.少腹逐瘀汤加减D.小建中汤加减E.柴胡疏肝散加减腹痛气滞证,治疗宜首选
目前对急性胰腺炎早期诊断有重要意义的检验指标是
痤疮发生主要是由于()
臂梁AB由三根相同的矩形截面直杆胶合而成,长为l,材料的许可应力为[σ]。若胶合面开裂,假设开裂后三根杆的挠曲线相同,接触面之间无摩擦力。则在梁承载能力范围之内开裂前后的B端挠度之比为()。
从事下列()工作的人员必须取得会计从业资格,持有会计从业资格证书。
食用油品牌A的产品特征:(1)产品原料主要来自于豆类,原料概念新,产品形象新;(2)产品中维生素含量丰富,并且比市场上现有品牌的维生素含量高;(3)营养价值高,营养成分平衡;(4)产品有一定的保健功能;(5
某年的3月共有5个星期三,并且第一天不是星期一,最后一天不是星期五,则该年的3月15日是()。
定义无符号整数类为UInt,下面可以作为类UInt实例化值的是( )。
MichaelJordan,abasketballplayerinwhomcommentatorshavediscernedaristocraticqualitiesandsupernaturalpowers,hasret
最新回复
(
0
)