首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2015年)设矩阵A=,且A3=O. (Ⅰ)求a的值; (Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵.求X.
(2015年)设矩阵A=,且A3=O. (Ⅰ)求a的值; (Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵.求X.
admin
2018-07-30
113
问题
(2015年)设矩阵A=
,且A
3
=O.
(Ⅰ)求a的值;
(Ⅱ)若矩阵X满足X-XA
2
-AX+AXA
2
=E,其中E为3阶单位矩阵.求X.
选项
答案
(Ⅰ)由A
3
=O两端取行列式,得|A|
3
=0,从而得|A|=0,而|A|=a
3
.所以a=0. (Ⅱ)方法1:由已知的X-XA
2
-AX+AXA
2
=E,得 X(E-A
2
)-AX(E-A
2
)=E 即 (E-A)X(E-A
2
)=E 由(Ⅰ)知 [*] 由于E-A,E-A
2
均可逆,所以 X=(E-A)
-1
(E-A
2
)
-1
[*] 方法2:同解1一样可得 (E-A)X(E-A
2
)=E 所以 X=(E-A)
-1
(E-A
2
)
-1
=[(E-A
2
)(E-A)]
-1
=[E-A-A
2
+A
3
]
-1
=[E-A-A
2
]
-1
由(Ⅰ)知 E-A-A
2
=[*] 所以 X=(E-A-A
2
)
-1
=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/B9j4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y’|x=0=1的解为y=________.
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设函数f(x)=(α>0,β>0).若(x)在x=0处连续,则
设A是,n阶矩阵,下列结论正确的是().
设n维列向量α=(a,0,…,0,a)T,其中a
求曲y=x2-2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
计算dxdy,其中D是由曲线y=-a+和直线y=-x所围成的区域.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2a1+α2-α3,α2+α3线性相关,则a=_______
随机试题
急性胰腺炎患者疼痛剧烈时不宜使用的镇痛剂是
敌百虫中毒时,不采用碱性溶液洗胃的原因是
肝脏的主要功能应除外
A.微小病变B.毛细血管内增生性肾炎C.系膜增生性肾炎D.新月体肾炎E.系膜毛细血管性肾炎慢性肾炎常见于
项目经理部在现场入口处的醒目位置,应公示的“二图”是()。
不论企业是否获利,企业债券必须按期如数还本付息,而普通股票的收益则取决于企业盈利状况。()
企业信息系统应包含什么内容?核心内容是什么?一个更大的供应链系统中,生产企业物流信息系统的运行动力在哪里?生产企业应该根据哪些要素来选择适用有效的信息系-%7技术生产企业物流信息系统的发展趋势是什么?
从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
设x∈(0,1),证明:(1-x)ex<
A、Theyarebeingwellprotectedbyhumans.B、Theyareofferedmorefoodbytourists.C、Theyarephysicallyadaptedtotheharsh
最新回复
(
0
)