首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t). (1)问t为何值时,向量组α1,α2,α3线性无关? (2)当t为何值时,向量组α1,α2,α3线性相关? (3)当α1,α2,α3线性相关时,将α1表示为α1和α2的线性组合.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t). (1)问t为何值时,向量组α1,α2,α3线性无关? (2)当t为何值时,向量组α1,α2,α3线性相关? (3)当α1,α2,α3线性相关时,将α1表示为α1和α2的线性组合.
admin
2018-07-31
79
问题
设α
1
=(1,1,1),α
2
=(1,2,3),α
3
=(1,3,t).
(1)问t为何值时,向量组α
1
,α
2
,α
3
线性无关?
(2)当t为何值时,向量组α
1
,α
2
,α
3
线性相关?
(3)当α
1
,α
2
,α
3
线性相关时,将α
1
表示为α
1
和α
2
的线性组合.
选项
答案
由行列式|(α
1
,α
2
,α
3
)
T
|=t-5,知当t≠5时,α
1
,α
2
,α
3
线性无关,当t=5时,α
1
,α
2
,α
3
线性相关.当t=5时,由解方程组x
1
α
1
+x
2
α
2
=α
3
,得α
3
=-α
1
+2α
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/V9j4777K
0
考研数学二
相关试题推荐
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y’|x=0=1的解为y=________.
设A为m×n矩阵,且r(A)=m<n,则下列结论正确的是().
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=_______
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
设矩阵A和B满足关系式AB=A+2B,其中,求矩阵B.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
随机试题
简述我国城市社区建设的基本原则。
地高辛是临床需进行治疗药物监测的主要药物之一,其原因是
中毒表现为惊厥、痉挛,甚至角弓反张,是因中毒表现为胸闷、心悸、心律不齐,心电图显示房室传导阻滞,是因
肠结核的好发部位是
货币制度主要由哪些要素构成?
某位经营者投入巨资修建了一条连通市区和机场的高速公路,这条公路比原来市区通往机场的高速公路路程短且路况好。当然,这条私营高速公路是要收费的。运行一段时间后,这条高速公路的经营者发现车流量比预期要少得多,这条期望中的“招财路”并没有立即招财。以下各项如果为真
销售部助理小王需要根据2012年和2013年的图书产品销售情况进行统计分析,以便制订新一年的销售计划和工作任务。现在,请按照如下要求完成以下工作。在“2013年图书销售分析”工作表中的N4:N11单元格区域中,插入用于统计销售趋势的迷你折线图,各单元格
Humancreativenessisboundless.Withtheadvanceofscienceandtechnology,acompletenewmeansofcommunication—MobilePhon
HebegantostudyEnglishsixyearsago.HehasstudiedEnglish______.
It’sanannualback-to-schoolroutine.Onemorningyouwavegoodbye,andthat【C1】______eveningyou’reburningthe;late-nightoi
最新回复
(
0
)