首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2009年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则
(2009年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则
admin
2019-05-11
71
问题
(2009年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f
+
’(0)存在,且f
+
’(0)=A。
选项
答案
(I)作辅助函数[*] 易验证φ(x)满足φ(a)=φ(b),φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足:在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,从而由拉格朗日中值定理可得,存在[*],使得 [*] 故f
+
’(0)存在,且f
+
’(0)=A。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/sBJ4777K
0
考研数学三
相关试题推荐
设随机变量X服从参数为1的指数分布,随机变量函数Y=1一e—X的分布函数为FY(y),则FY()=________。
设随机变量X~U[-1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
设A,B是两个随机事件,且P(A)=0.4,P(B)=0.5,P(A|B)=P(A|=______.
设总体X服从正态分布N(μ,σ2)(σ>0).从该总体中抽取简单随机样本X1,X2,…,X2n(n>2).令,求统计量的数学期望.
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,y0)
(2005年)设f(u)具有二阶连续导数,且g(x,y)=
(2003年)设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是()
(2004年)求其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图所示)
随机试题
(2006年第148题)大量输血后患者可出现
系统性红斑狼疮(SLE)是一种
固定资产投资(建设投资)包括()。①工程费用②工程建设③其他费用④预备费
具有1区爆炸危险环境的建筑物,因火花而引起爆炸,会造成巨大破坏和人身伤亡者按防雷要求属于()类。
1904年5月21日,由_______个国家足球协会的代表在巴黎成立了国际足球联合会。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
设f(x)=∫01-cosxsint2dt,则当x→0时,f(x)是g(x)的().
ItwasabeautifulsummerdayandIwastakingawalkinthedowntownareaofMadrid.WhenIturnedastreet(56)Iheardt
A、Studyingcommerce.B、Readingastory.C、Enjoyingtheads.D、WatchingTV.D女士让男士帮忙挪沙发,男士说Themovieissointeresting…youwait…t
Students’pressuresometimescomesfromtheirparents.Mostparentsarewell【B1】_______,butsomeofthemaren’tveryhelpfulwi
最新回复
(
0
)