首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数. (1)写出f(x)在[-2,0)上的表达式; (2)问k为何值时,f(x)在x=0处可导?
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数. (1)写出f(x)在[-2,0)上的表达式; (2)问k为何值时,f(x)在x=0处可导?
admin
2019-08-01
50
问题
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x
2
-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.
(1)写出f(x)在[-2,0)上的表达式;
(2)问k为何值时,f(x)在x=0处可导?
选项
答案
(1)当-2≤x<0,即0≤x+2<2时, f(x)=kf(x+2)=k(x+2)E(x+2)
2
-4]=kx(x+2)(x+4). (2)由题设知f(0)=0. [*] 令f’(0)=f’
+
解析
分段函数在分段点的可导性只能用导数定义讨论.
转载请注明原文地址:https://www.kaotiyun.com/show/pDN4777K
0
考研数学二
相关试题推荐
设曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
已知α1,α2,α3线性无关.α1+tα2,α2+2tα3,α3+4tα1线性相关.则实数t等于______.
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
证明下列不等式:
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
若行列式的某个元素aij加1,则行列式的值增加Aij.
(2013年)设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3).则|A|=________.
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2χ-y)+g(χ,χy),求.
随机试题
临床上,经过治疗也不能保存的第一恒磨牙最佳拔除时间范围宜在
A、黄芩苷B、黄芩素C、槲皮素D、槲皮素-7-O-葡萄糖苷E、矢车菊素不易溶于水易溶于NaHCO3的苷是
关于信用证支付,下列说法错误的是?()
下列说法错误的是()。
在素质测评中,常用的对员工进行分类的标准有()。
在培养学生问题解决能力时,教师做法错误的是()。
很多孩子只能听赞美之词,听不得半点反对意见;有的孩子外表高傲,内心脆弱,敏感多疑。他们遇到一些不顺心的事情,就会有极端的举动,这就是所谓的“蛋壳心理”。过分骄纵、百般溺爱是导致这种心理的最直接原因。建议父母在孩子顺心的成长道路上制造一点挫折,让孩子学会在逆
由清末民初实利主义、实用主义教育思想发展而来,适应中国民族资本主义发展的需要,提出教育要授人以一技之长和促进实业发展的教育思潮是()。
CorporateReceptionistWantedAbouttheJobHTStaffingisseekingaCorporateReceptionistintheWestLakeHillsarea.We
OneofAmerica’smostimportant【B1】______ishermodernmusic.Americanpopularmusicisplayedallovertheworld.Itisenjoye
最新回复
(
0
)