首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3线性无关.α1+tα2,α2+2tα3,α3+4tα1线性相关.则实数t等于______.
已知α1,α2,α3线性无关.α1+tα2,α2+2tα3,α3+4tα1线性相关.则实数t等于______.
admin
2018-06-27
57
问题
已知α
1
,α
2
,α
3
线性无关.α
1
+tα
2
,α
2
+2tα
3
,α
3
+4tα
1
线性相关.则实数t等于______.
选项
答案
-1/2
解析
本题可以用定义做,但是表述比较哕嗦,用秩比较简单.证明α
1
+tα
2
,α
2
+2tα
3
,α
3
+4tα
1
线性相关就是要证明其秩小于3.
记矩阵A=(α
1
+tα
2
,α
2
+2tα
3
,α
3
+4tα
1
).用矩阵分解,有
A=(α
1
,α
2
,α
3
)
记C=
由于α
1
,α
2
,α
3
线性无关,(α
1
,α
2
,α
3
)是列满秩的,于是根据矩阵秩的性质⑥,
r(α
1
+tα
2
,α
2
+2tα
3
,α
3
+4tα
2
)=r(A)=r(C).
于是α
1
+tα
2
,α
2
+2tα
3
,α
3
+4tα
2
线性
相关
r(C)<3
|C|=0.
求出|c|=1+8t
3
,于是得8t
3
=-1,t=-1/2.
转载请注明原文地址:https://www.kaotiyun.com/show/EYk4777K
0
考研数学二
相关试题推荐
设函数z=f(u),方程u=ψ(u)+∫yx(f)df确定“是x,y的函数,其中f(u),ψ(u)可微;p(t),ψ’(u)连续,且ψ’(u)≠1.求.
设S表示夹在x轴与曲线y=F(x)之间的面积.对任何t>0,S1(t)表示矩形-t≤x≤t,0≤y≤F(t)的面积.求:(1)S(t)=S—S1(t)的表达式;(2)S(t)的最小值.
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S
微分方程y"=2y’+2y=e2的通解为________.
从抛物线y=x2一1的任意一点P(t,t2—1)引抛物线y=x2的两条切线,求这两条切线的切线方程;
讨论,在点(0,0)处的连续性、可偏导性及可微性.
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
随机试题
关于结核性腹膜炎腹痛的特点,下列哪项除外
气血两虚可见到下列哪些舌象
对过分突出的上颌结节是否要手术,需考虑的因素,不包括
背景某项工程业主与承包商签订了工程承包合同,合同中含有两个子项工程,估算工程质量,甲项为2300m3,乙项为3200m3,经协商,甲项单价为180元/m3,乙项为160元/m3。承包合同规定:(1)开工前10d业主向承包商支付工程合同2
我国证券投资基金均为()。
绿色科技,是指以提倡文明的生活方式和适度的消费方式,强调自然资源的合理开发和循环利用,发展清洁生产技术、无污染的绿色产品,企业实行绿色管理和对环境的治理,保持人类社会可持续发展的科学技术。根据上述定义,下列选项中不是发展绿色科技的手段是( )。
Ethernet陨头长度字段的值不包括以下哪个字段的长度?()
Themoviestar’softeninfuriatingbehavioronthesethadfewlastingeffects:hewassoadeptat(i)______hiscolleagues’irri
Motivationis"thedrivingforcewithinindividualsthatimpelsthemtoaction."Andgoalsarethesought-afterresults(1)moti
Apieceofnewsthata12-year-oldboywhohasneverreceivedanyschooleducationhasbeenadmittedbyafirst-classuniversity
最新回复
(
0
)