首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 用变量代换x=cost(0<t<π)化简微分方程(1-x2)y"一xy′+y=0,并求其满足y∣x=0=1,y′∣x=0=2的特解.
[2005年] 用变量代换x=cost(0<t<π)化简微分方程(1-x2)y"一xy′+y=0,并求其满足y∣x=0=1,y′∣x=0=2的特解.
admin
2019-05-10
53
问题
[2005年] 用变量代换x=cost(0<t<π)化简微分方程(1-x
2
)y"一xy′+y=0,并求其满足y∣
x=0
=1,y′∣
x=0
=2的特解.
选项
答案
所给方程为变系数方程,一般直接求解比较困难.给出了自变量替换后,可转化为常系数微分方程,并可求得其通解.为此先将y′,y"转化为[*],再用二阶常系数线性微分方程的求解方法求解. 注意到y是x的函数,x为t的函数,因而y为t的复合函数x为中间变量,则 [*] =(1一cos
2
t)[*]=(1一x
2
)y"一xy′. 于是原方程可化为[*]+y=0,其特征方程为r
2
+1=0,解得r
1,2
=±i.于是此方程的通解为 y=C
1
cost+C
2
sint.于是原方程的通解为y=C
1
x+C
2
[*] 由y∣
x=0
=1,y′∣
x=0
=2得C
1
=2,C
2
=1,故所求方程的特解为y=2x+[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/oNV4777K
0
考研数学二
相关试题推荐
若f(-χ)=-f(χ),且在(0,+∞)内f′(χ)>0,f〞(χ)>0,则在(-∞,0)内().
求不定积分∫cos(lnχ)dχ.
求不定积分
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设f(χ)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(χ)|≤k,证明:当χ≥0时,有|f(χ)|≤(eaχ-1).
设曲线y=lnχ与y=k相切,则公共切线为_______.
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2.(1)试求D1绕x轴旋转而成的旋转体的体积V1;D2绕y轴旋转而成的旋转体的体积V2;(2)问
设f’(x)连续,f(0)=0,f’(0)≠0,F(x)=∫0xtf(t2-x。)dt,且当x→0时,F(x)~x,求n及f’(0).
随机试题
贯彻企业的质量方针,每个职工要(),在工作中不断进行改善,努力提高产品和工作服务质量。
由肾上腺皮质束状带细胞分泌的激素主要是
工程建设项目管理服务评标一般采用()。
施工安全隐患一般包括人的不安全行为、物的不安全状态以及()。
上市公司向原股东配售股份应当采用()发行。
在目前的现实生活中,女性常以家庭为中心,男性则以工作和社会活动为中心,形成了“男主外女主内”的分工模式。这主要是由()造成的。
所有重点大学的学生都是聪明的学生,有些聪明的学生喜欢逃课,小杨不喜欢逃课,所以小杨不是重点大学的学生。以下除哪项外,均与上述推理的形式类似?
请写出下列画线字的拼音。(对外经济贸易大学2016)蜷曲
简述诚实信用原则的含义和法律要求。
Tomhassomenewpencils.Theyarered,black,blue,whiteandgreen.Tomlikesthemverymuch.Hedraws(画画)withthem.Nowheis
最新回复
(
0
)