首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ),g(χ)为[a,b]上连续的增函数(0<a<b),证明: ∫abf(χ)dχ∫abg(χ)dχ≤(b-a)∫abf(χ)g(χ)dχ.
设f(χ),g(χ)为[a,b]上连续的增函数(0<a<b),证明: ∫abf(χ)dχ∫abg(χ)dχ≤(b-a)∫abf(χ)g(χ)dχ.
admin
2017-09-15
76
问题
设f(χ),g(χ)为[a,b]上连续的增函数(0<a<b),证明:
∫
a
b
f(χ)dχ∫
a
b
g(χ)dχ≤(b-a)∫
a
b
f(χ)g(χ)dχ.
选项
答案
令F(χ,y)=[f(χ)-f(y)][g(χ)-g(y)],D={(χ,y)|a≤χ≤b,a≤y≤b}, 因为f(χ),g(χ)在[a,b]上为增函数,所以F(χ,y)≥0,从而∫
a
b
dχ∫
a
b
F(χ,y)dy≥0, 而∫
a
b
dχ∫
a
b
F(χ,y)dy=∫
a
b
dχ∫
a
b
[f(χ)g(χ)-f(χ)g(y)-f(y)g(χ)+f(y)g(y)]dy =(b-a)∫
a
b
f(χ)g(χ)dχ-∫
a
b
f(χ)dχ∫
a
b
g(y)dy-∫
a
b
g(χ)dχ∫
a
b
f(y)dy+(b-a)∫
a
b
f(y)g(y)dy =2(b-a)∫
a
b
f(χ)g(χ)dχ-2∫
a
b
f(χ)dχ∫
a
b
g(χ)dχ, 故∫
a
b
f(χ)dχ∫
a
b
g(χ)dχ≤(b-a)∫
a
b
f(χ)g(χ)dχ.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dOt4777K
0
考研数学二
相关试题推荐
[*]
A、 B、 C、 D、 C
证明:[*]
设f(x)=3x2+Ax-3,问正数A至少为何值时,可使对任意的x∈(0,+∞),都有f(x)≥20.
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
设f(x)在x=0的邻域内有定义,f(0)=1,且则f(x)在x=0处().
(2002年)设函数f(u)可导,y=f(χ2)当自变量χ在χ=-1处取得增量△χ=-0.1时,相应的函数增量△y的线性主部为0.1,则f′(1)=【】
随机试题
A:Thetimehascometosaygoodbye.B:Sosoon.【D8】________Itcertainlyhasbeenapleasureseeingyouagainandtalkingabout
关于共同诉讼人,下列说法中错误的是()
在地下水严重超采地区,经下列哪个部门批准,可以划定地下水禁止开采或者限制开采区()
大量饮清水后引起尿量增多的主要原因是
牙齿感觉过敏症的主要症状是
下列关于注册建造师执业工程规模标准(公路工程)说法中错误的是()。
创造性的基本特征有()。
股票在中国的历史.可以追溯到19世纪洋务运动时期。当时中国出现了一批官办与官商合办的股份制企业。1873年成立的轮船招商局,发行了中国最早的股票。1914年,中国北洋政府颁布证券交易所法。1917年成立了北京证券交易所。到抗日战争前,上市股票已达百余种。但
以下程序中函数sort的功能是对a数组中的数据进行由大到小的排序voidsort(inta[],intn){intid,t;for(i=0;i
Grandma,whatabigandficklemetaphoryoucanbe!Forchildren,thenametranslatesas"themagnificentonewithpresentsinh
最新回复
(
0
)