首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶对称矩阵的全体V对于矩阵的线性运算构成一个维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=PTAP,是V中的线性变换.
n阶对称矩阵的全体V对于矩阵的线性运算构成一个维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=PTAP,是V中的线性变换.
admin
2016-03-05
94
问题
n阶对称矩阵的全体V对于矩阵的线性运算构成一个
维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=P
T
AP,是V中的线性变换.
选项
答案
设A,B∈V,那么有A
T
=A,B
T
=B,则[TA]
T
=(P
T
AP)
T
=P
T
(P
T
A)
T
=P
T
AP=TA因此TA∈V.又因T(A+B)=P
T
(A+B)P=P
T
AP+P
T
BP=TA=+TA;T(kA)=P
T
(kA)P=kP
T
AP=kTA由线性变换的定义可知,合同变换T是V中的线性变换.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ka34777K
0
考研数学二
相关试题推荐
设数列{an}满足a0=2,nan=an-1+n-1(n≥1).求幂级数的和函数S(x)满足的一阶微分方程,并求S(x).
设数列{an}满足a0=2,nan=an-1+n-1(n≥1).证明:
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0.证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
设A,B均是m×n矩阵,则方程组Ax=0与Bx=0同解的充分必要条件是()
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=1,且a1+2a2=a3,A*是A的伴随矩阵.求正交变换x=Qy化二次型f(x1,x2,x3)=xTAx为标准形;
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.求S1与S2绕Oy轴旋转一周所产生的两个旋转体的体积之比.
设函数f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明:(1)存在x1∈[0,1],使得|f(x1)|>4;(2)存在x2∈[0,1],使得|f(x2)|=4.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
随机试题
MEMS指的是【】
近点
柯里为甲国驻乙国领馆的官员,吉姆为丙国驻乙国使馆的二等秘书。柯里周末出游在乙国首都开车时因违反交通规则撞伤一行人,因紧张,对伤者未实施救助即逃逸,导致伤者死亡。吉姆目击了该事件。甲、乙、丙三国均为《维也纳外交关系公约》和《维也纳领事关系公约》的缔约国,且三
侵权责任是侵权行为的法律后果,它具有()的双重性质。
硅酸盐水泥凝结时间在施工中有重要意义,其正确的范围是()。
代位权是指因债务人怠于行使到期债权,对债权人造成损害的,债权人可以向人民法院请求以自己的名义代位行使债务人的债权。根据《合同法》规定,下列属于代位权行使所必备的条件是()。
计算企业应纳税所得额时允许扣除的项日包括()。
上山:山上
在中国,下列最早运用马克思主义观点阐述教育教学问题的著作是()
WhowontheWorldCup1994footballgame?WhathappenedattheUnitedNations?Howdidthecriticslikethenewplay?【21】_____
最新回复
(
0
)