首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η*是非齐次线性方程组Ax=b的一个解,ξ1,ξn-r是对应的齐次线性方程组的一个基础解系,证明: η*,ξ1,…,ξn-r线性无关.
设η*是非齐次线性方程组Ax=b的一个解,ξ1,ξn-r是对应的齐次线性方程组的一个基础解系,证明: η*,ξ1,…,ξn-r线性无关.
admin
2021-02-25
42
问题
设η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,ξ
n-r
是对应的齐次线性方程组的一个基础解系,证明:
η
*
,ξ
1
,…,ξ
n-r
线性无关.
选项
答案
设有关系式kη
*
+k
1
ξ
1
+…+k
n-r
ξ
n-r
=0.用矩阵A左乘两端,有 O=kAη
*
+k
1
Aξ
1
+…+k
n-r
Aξ
n-r
=kAη
*
=kb. 所以k=0,从而有k
1
ξ
1
+…+k
n-r
ξ
n-r
=0,而ξ
1
,…,ξ
n-r
线性无关, 所以k
1
=…=k
n-r
=0,从而有η
*
,ξ
1
,…,ξ
n-r
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/j484777K
0
考研数学二
相关试题推荐
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a<b≤).证明:存在ξ,η∈(a,b),使得
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
(1997年)已知且A2-AB=I,其中I是3阶单位矩阵。求矩阵B.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第一列为(1,2,1)T,求a,Q。
设3阶矩阵A的特征值为2,3,λ.如果|2A|=-48,则λ=______.
随机试题
某同学使用Photoshop软件为自己家种植的橙子制作宣传海报,其图层面板如下图所示。以下说法正确的是()。
在Excel2010中,假定A2单元格的内容为数值13,则公式“=IF(A2>15,’’好’’,IF(A2>10,’’中’’,’’差’’))”的值为______。
关于溶血性贫血的试验,说法正确的是
下列所得中,适用5%~35%的五级超额累进税率征收个人所得税的有()。
某有限责任公司共有股东12人。股东韩某拟向王某转让出资,使王某成为公司新的股东。除韩某外,6人同意,5人不同意。下列表述中,正确的有()。
劳动者在参加以下()社会活动期间,企业应依法按照规定正常支付工资。
在中国,所有公民都在宪法的保护之下,相反,在穷人得不到充分保护的资源语境下奢谈“保护富人”是相当危险而诡异的——它很可能对“贫富关系”造成舆情上的断裂与伤害。某种意义上说,在中国市场经济舞台上,以企业家为代表的“富人”群体的逐利本性与穷人的挣扎生存相比,似
在面向对象的语言中,______是程序设计的基本实体。
Moviesisthemostpopularformofentertainmentfor【76】______millionsAmericans.Theygotothemoviestoescape
FewAmericansstayinonepositionoroneplaceforalifetime.Wemovefromtowntocityto【T1】______,fromajobinoneregio
最新回复
(
0
)