首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3维向量组α1,α2线性无关,β1,β2线性无关. (Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出; (Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设3维向量组α1,α2线性无关,β1,β2线性无关. (Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出; (Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
admin
2019-07-28
123
问题
设3维向量组α
1
,α
2
线性无关,β
1
,β
2
线性无关.
(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出;
(Ⅱ)若α
1
=(1,-2,3)
T
,α
2
=(2,1,1)
T
,β
1
=(-2,1,4)
T
,β
2
=(-5,-3,5)
T
.求既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出的所有非零向量ξ.
选项
答案
(Ⅰ)因α
1
,α
2
,β
1
,β
2
均是3维向量,4个3维向量必线性相关,由定义知,存在不全为零的数k
1
,k
2
,λ
1
,λ
2
,使得 k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0, 得 k
1
α
1
+k
2
α
2
=-λ
1
β
1
-λ
2
β
2
. 取 ξ=k
1
α
1
+k
2
α
2
=-λ
1
β
1
-λ
2
β
2
, 若ξ=0,则 k
1
α
1
+k
2
α
2
=-λ
1
β
1
-λ
2
β
2
=0. 因α
1
,α
2
线性无关,β
1
,β
2
也线性无关,从而得出k
1
=k
2
=0,且λ
1
=λ
2
=0,这和4个3维向量必线性相关矛盾,故ξ≠0.ξ即为所求的既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出的非零向量. (Ⅱ)设ξ=k
1
α
1
+k
2
α
2
=-λ
1
β
1
-λ
2
β
2
,则得齐次线性方程组 k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0, 将α
1
,α
2
,β
1
,β
2
合并成矩阵,并作初等行变换得 (α
1
,α
2
,β
1
,β
2
)=[*] 解得 (k
1
,k
2
,λ
1
,λ
2
)=k(-1,2,-1,1). 故既可由α
1
,α
2
线性表出,又可以由β
1
,β
2
线性表出的所有非零向量为 ξ=k
1
α
1
+k
2
α
2
=-kα
1
+2kα
2
=-k[*],其中k是任意的非零常数 (或ξ=-λ
1
β
1
-λ
2
β
2
=kβ
1
-kβ
2
=k[*],其中k是任意的非零常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/CWN4777K
0
考研数学二
相关试题推荐
设=_______.
设f(x)在[a,b]上连续可导,证明:∫abf(x)dx|+∫ab|f’(x)|dx.
求
计算D2n=
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设A=,B≠O为三阶矩阵,且BA=O,则r(B)=__________.
设矩阵A,B满足A*BA=2BA-8E,且A=,则B=______.
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:(1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2)
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得=a+b.
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex.确定常数a,b,c,并求该方程的通解.
随机试题
财务信息需求主体包括
中药炮制的方法除炒法、炙法等常见方法外还有一些较为特殊的方法,如提净法、干馏法、烘培法、发芽法等。可以采用干馏法制得的药物是()
国际工程项目建筑安装工程费用盈余不包括()。
根据我国施工合同示范文本,改变任何工作的质量和性质属于( )。
在报关单里,()是报关员配合海关查验、缴纳税费、提取或装运货物的重要单据。
当期货市场出现异常情况时,期货交易所可以按照其章程规定的权限和程序,采取( )紧急措施。
可转换证券有两种价值,即理论价值和转换价值。()
在WindowsXP中,为了将软盘上选定的文件移动到硬盘上,正确的操作是()。
玛雅人是中美洲的土著居民,曾经拥有高度发达的文明。大约从公元300年起,玛雅文明进入了被称为古典期的鼎盛时期。公元800年,古典期玛雅文明达到了它的顶峰,随后却发生了不可思议的崩溃。在此后的100多年里,玛雅人先后放弃了他们的繁华城市,神庙和广场成了野
A、Curiosityandcarefulness.B、Curiosityandpatience.C、Curiosityandakindofaffinity.D、Akindofaffinityandhonesty.C本题
最新回复
(
0
)