首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1. (1)确定a,使S1+S2达到最小,并求出最小值; (2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1. (1)确定a,使S1+S2达到最小,并求出最小值; (2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
admin
2018-05-22
110
问题
设直线y=ax与抛物线y=x
2
所围成的图形面积为S
1
,它们与直线x=1所围成的图形面积为S
2
,且a<1.
(1)确定a,使S
1
+S
2
达到最小,并求出最小值;
(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
选项
答案
(1)直线y=ax与抛物线y=x
2
的交点为(0,0),(a,a
2
). 当0<a<1时,S=S
1
+S
2
=∫
0
a
(ax-x
2
)dx+∫
a
1
(x
2
-ax)dx=[*] 令S’=a
2
-[*]时,S
1
+S
2
取到最小值,此时最小值为[*] 当a≤0时,S=∫
a
(ax-x
2
)dx+∫
0
1
(x
2
-ax)dx=[*] 因为S’=[*](a
2
+1)<0,所以S(a)单调减少,故a=0时S
1
+S
2
取最小值,而 S(0)=[*]=S(0),所以当a=[*]时,S
1
+S
2
最小. (2)旋转体的体积为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Nqk4777K
0
考研数学二
相关试题推荐
设函数.(1)求f(x)的最小值;(2)设数列{xn}满足,证明存在,并求此极限.
设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt是
(1)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫ab(x)dx=f(η)(b-a);(2)若函数ψ(x)具有二阶导数,且满足ψ(2)>ψ(1),ψ(2)>∫abψ(x)dx,则至少存在一点ξ∈(1,3)
求函数f(x)=∫1x2(x2-t)e-t2dt的单调区间与极值。
设m,n是正整数,则反常积分的收敛性
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T.试问:当a,b,c满足什么条件时,(1)β可由3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1,α
设f(x)在[0,1]上连续,在(0,1)内可导,且满足,证明:存在一点ξ∈(0,1),使得f’(ξ)=2ξf(ξ).
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组(α1,α2)x=β有唯一解,并求该解;
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积八为有限值,求b及A的值.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y/(0)=3/2的解.
随机试题
超声诊断出现不恰当的常见原因有
多发性骨髓瘤血液生化最主要的特征是
该病的中医诊断是:该病治疗方法是:
药物的排泄方式不包括()。
在分析外汇期货价格的决定时,不仅要对每个国家进行单独研究,而且应该对它们做比较研究,衡量一国经济状况好坏的因素,主要有()。
根据证券化产品的金融属性不同,可以将资产证券化分为( )。
母子公司间提供服务支付费用有关企业所得税的处理,下列陈述不正确的是()。
下列语句反映的历史事件,按时间先后排序正确的是()。①大楚兴,陈胜王②诛晁错,清君侧③苍天已死,黄天当立
下列对行政复议的特征叙述错误的选项是()。
下列村民中,可以列入参加选举的村民名单的是()
最新回复
(
0
)