首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km皆有k1α1+k2α2+…+kmαm≠0,则( ).
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km皆有k1α1+k2α2+…+kmαm≠0,则( ).
admin
2022-04-02
59
问题
设A=(α
1
,α
2
,…,α
m
),其中α
1
,α
2
,…,α
m
是n维列向量,若对于任意不全为零的常数k
1
,k
2
,…,k
m
皆有k
1
α
1
+k
2
α
2
+…+k
m
α
m
≠0,则( ).
选项
A、m>n
B、m=n
C、存在m阶可逆阵P,使得AP=
D、若AB=O,则B=O
答案
D
解析
因为对任意不全为零的常数k
1
,k
2
,…,k
m
,有k
1
α
1
+k
2
α
2
+…+k
m
α
≠0,所以向量组α
1
,α
2
,…,α
m
线性无关,即方程组AX=0只有零解,故若AB=0,则B=0,选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/i2R4777K
0
考研数学三
相关试题推荐
设三角形三边的长分别为a,b,c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设为两个正项级数.证明:
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
设X的密度为f(χ)=,-∞<χ<+∞求:(1)常数C和X的分布函数F(z),(2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.求方程组(I)的一个基础解系;
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:试当n=1500时求舍位误差之和的绝对值大于15的概率;
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
证明:若A为n阶方阵,则有|A*|=|(-A)*|(n≥2).
随机试题
在蜗杆传动中,当导程角γ>6°时,蜗杆传动便可以自锁。()
J公司是一家建于20世纪50年代的老企业,该企业的涂装车间为独立设置的联合厂房,由5个主跨和1个辅跨组成。主跨内主要进行除锈、打磨、上漆、干燥。辅跨内设有相互独立的办公室、休息室、更衣室和变配电室。涂装车间有员工125人,其中80人为来自D公司的
对于劳动防护用品,生产经营单位应当教育从业人员做到()。
在费用优化过程中,当网络计划出现了几条关键线路时,在考虑质量、安全影响的基础上,优先选择的压缩对象是各条关键线路上( )的工作组合。
根据《关于清理规范工程建设领域保证金的通知》(国办发[2016]49号),工程质量保证金的预留比例上限不得高于工程价款结算总额的()。
企业开出转账支票1790元购买办公用品,编制记账凭证时,误记金额为1970元,科目及方向无误并已记账,应采用的更正方法是()。
我国商业银行信用风险监管指标包括()。
根据支付结算法律制度的规定,中国人民银行现代化支付系统包括()三个业务应用系统。
根据下列资料,回答下列问题。1999年9月,国务院发布《全国年节及纪念日放假办法》,决定增加公众法定休假日,“十一”黄金周就此诞生。据统计当年7天内全国出游人数达2800万人次,旅游综合收入141亿元。2016年“十一”黄金周,全国共接待游客5.93亿
Anewstudysuggeststhatcontrarytomostsurveys,peopleareactuallymorestressedathomethanatwork.Researchersmeasured
最新回复
(
0
)