首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X的密度为f(χ)=,-∞<χ<+∞ 求:(1)常数C和X的分布函数F(z), (2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
设X的密度为f(χ)=,-∞<χ<+∞ 求:(1)常数C和X的分布函数F(z), (2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
admin
2019-08-06
74
问题
设X的密度为f(χ)=
,-∞<χ<+∞
求:(1)常数C和X的分布函数F(z),
(2)P(0≤X≤1)及Y=e
-|X|
的密度f
Y
(y).
选项
答案
[*] Y的分布函数为F
Y
(y)=P{Y≤y}=P{e
-|X|
≤y} 显然,y≤0时,F
Y
(y)=0,y≥1时,F
Y
(y)=1,这时f
Y
(y)=F′
Y
(y)=0; 当0<y<1时,F
Y
(y)=P{-|X|≤lny}=P{|X|≥-lny}=1-P(lny≤X≤-lny}=1-∫
lny
-lny
f(χ)dχ, 则f
Y
(y)=F′
Y
(y)=-[f(-lny)(-[*]-f(lny).[*]]=[*][f(-lny)+f(lny)], 注意到f(χ)是一偶函数, 故f
Y
(y)=[*]f(lny)=[*] 即f
Y
(y)=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/A5J4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在c∈(a,b),使得f(c)=0;
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设随机变量X服从参数为2的指数分布,令求:(U,V)的分布;
设f(x)=a1ln(1+x)+a21n(1+2x)+…+an1n(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
已知微分方程y"+(x+e2y)(y’)3=0.若把y看成自变量,x看成函数,则方程化成什么形式?
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程()的通解.
计算二重积分ye-4xdσ,其中D是由曲线y=ex与直线y=x+1在第一象限围成的无界区域.
设有一密度均匀的球锥体,球的半径为R,锥顶角为π/3,求该球锥体对位于其顶点处的单位质点的引力.
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量U=X+Y的方差.
随机试题
填空“延”有_____笔。
A、GLPB、DTAC、ODSD、RSDE、SD相对标准偏差的缩写是()
患者女性,63岁,因支气管扩张合并肺部感染、左心心力衰竭入院治疗,入院时T39℃,呼吸急促,端坐呼吸。患者以往有骨质疏松,自行长期口服活性钙,护士应嘱咐患者
对()的场所应采用密闭一抽风—除尘的方法来消除和降低粉尘危害。
我国银行业的汽车贷款业务萌芽于()年。
()的客户个人信息可以通过客户数据登记表获得。
最小的常模样本量,一般不小于()
下列句子中,没有语病的一句是()
我党提出“立党为公”中的“公”的意思是()。
WhichofthefollowingsentencesisComplexSentence?
最新回复
(
0
)