首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-1,且α1=(1,a+1,2)T,α2=(a-1,-a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,-5a,2a+1)T.试求a、λ0的值
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-1,且α1=(1,a+1,2)T,α2=(a-1,-a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,-5a,2a+1)T.试求a、λ0的值
admin
2021-02-25
91
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-1,且α
1
=(1,a+1,2)
T
,α
2
=(a-1,-a,1)
T
分别是λ
1
,λ
2
对应的特征向量.又A的伴随矩阵A
*
有一个特征值为λ
0
,属于λ
0
的特征向量为α
0
=(2,-5a,2a+1)
T
.试求a、λ
0
的值,并求矩阵A.
选项
答案
由于|A|=λ
1
λ
2
λ
3
=-2,故A可逆. 由于α
0
是A
*
的属于λ
0
的特征向量.所以A
*
α
0
=λ
0
α
0
.于是AA
*
α
0
=λ
0
Aα
0
,即|A|α
0
=λ
0
Aα
0
,亦即-2α
0
=λ
0
Aα
0
.故[*].从而-2/λ
0
是A的特征值,α
0
是A的关于-2/λ
0
对应的特征向量. 又由于α
1
,α
2
为实对称矩阵A的不同特征值的特征向量,故α
1
,α
2
正交,即α
T
1
α
2
=0,得a=±1. 无论a=1还是a=-1,则有α
0
与α
1
,α
2
中任何一个都线性无关,所以α
0
应是矩阵A的属于λ
3
的特征向量, 于是有λ
3
=-2/λ
0
从而λ
0
=2.且α
0
与α
1
正交,即α
T
0
α
1
=5
2
+a-4=0,则a=4/5或a=-1,于是a=-1,λ
0
=2. 令[*],则P可逆,且 [*] 所以 [*]
解析
本题考查实对称矩阵相似对角矩阵的逆问题.运用实对称矩阵不同的特征值所对应的特征向量必正交的性质来确定a与λ
0
.
转载请注明原文地址:https://www.kaotiyun.com/show/gZ84777K
0
考研数学二
相关试题推荐
2
[*]
设函数y=f(x)的增量函数△y=f(x+△x)-f(x)=+o(△x),且f(0)=π,则f(-1)为().
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,(1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f〞(η)=∫-aaf(χ)dχ
设f’(sin2x)=cos2x+tan2x,则f(x)=_________(0<x<1)
设f(u,v)一阶连续可偏导,f(tx,ty)=t3f(x,y),且f’1(1,2)=1,f’2(1,2)=4,则f(1,2)=______
设y1=ex,y2=x2为某二阶齐次线性微分方程的两个特解,则该微分方程为__________.
微分方程y"一4y’+4y=x2+8e2x的一个特解应具有形式(其中a,b,c,d为常数)()
随机试题
脑组织绝对量的增加要有()充分供应。
某省跨海大桥项目,在招标文件中明确规定提交投标文件截止时间为2009年3月8日上午8时30分,开标地点为建设单位十一楼大会议室。有甲、乙、丙、丁、戊五家单位参与投标,根据招标投标法的有关规定,下列说法正确的是()。
进口应税消费品,按照组成计税价格和规定的税率计算应纳消费税税额,其组成计税价格的公式是( )。
以一日、三日、五日、十日或十五日为一纳税期限缴纳流转税的纳税人,纳税期满后()内预缴税款。
在美术组中处于领导地位的是()。
请阅读下列材料:课题:我也动手设计一个网站教材分析:教材中主要讲述了网页规划内容,包括网页主题的确立、网页风格与创意和网页制作流程。这是网站设计的基础步骤,也是本单元主题活动的开始,在教学中培养学生良好的信息意识并能有序而规范地规划网站
有一阅览室,读者进入时必须先在一张登记表上登记,该表为每一座位列出一个表目,包括座号、姓名,读者离开时要注销登记信息;假如阅览室共有100个座位。试分别用信号量和P、V操作以及管程来实现用户进程的同步算法。
A、 B、 C、 D、 E、 C
法律、法规对所有权的限制主要表现为
Whattimewastheman’sappointment?
最新回复
(
0
)