首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0, (1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使a3f〞(η)=∫-aaf(χ)dχ
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0, (1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使a3f〞(η)=∫-aaf(χ)dχ
admin
2019-08-01
73
问题
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,
(1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式;
(2)证明在[-a,a]上至少存在一点η,使a
3
f〞(η)=∫
-a
a
f(χ)dχ
选项
答案
(1)对任意的χ∈[-a,a] f(χ)=f(0)+f′(0)χ+[*] 其中ξ在0与χ之间. (2)[*] 因为f〞(χ)在[-a,a]上连续,故对任意的χ∈[-a,a],有m≤f〞(χ)≤M,其中M,m分别为f〞(χ)在[-a,a]上的最大,最小值,所以 [*] 因而由f〞(χ)的连续性知,至少存在一点η∈[-a,a],使 [*] 即a
3
f〞(η)=3∫
-a
a
f(χ)dχ
解析
转载请注明原文地址:https://www.kaotiyun.com/show/wDN4777K
0
考研数学二
相关试题推荐
设齐次方程组(Ⅰ)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
设f(x)在[0,1]连续,且f(0)=f(1),证明:在[0,1]上至少存在一点ξ,使得
证明:
求下列函数的导数与微分:(Ⅰ)设y=,求dy;(Ⅱ)设y=,求y’与y’(1).
设求f(x)在点x=0处的导数.
设y=f(x)可导,且y’≠0.若y=f(x)二阶可导,则=________.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
若函数f(x)在x=1处的导数存在,则极限=_______.
求I=,D由曲线x2+y2=2x+2y-1所围成.
设f(x)在[a,b]上有二阶连续导数,求证:∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf’’(x)(x-a)(x-b)dx.
随机试题
点(0,b)到直线l:3x+4y-5=0的距离是2,且b<0,那么b=()。
PlantingPotatoesWhenIwasaboywehadseveralgardensaroundouroldhouse.Thelargestoneofallwasusedjustforgrow
有哪些因素影响切道斜度的大小
蒋某,男,70岁,高血压30余年,突然剧烈头痛、呕吐、迅速昏迷,血压190/100mmHg,护理体检发现有三偏征,瘫痪肢体肌张力降低,腱反射消失。该患者突然呼吸变慢乃至停止,两侧瞳孔不等大,护士应考虑发生
出版物的种类,除了图书、电子出版物之外,还有()等。
在化学标准化考试中,一般要求试题的区分度在()。
简述行动研究法的具体步骤。
所有国家的法律都表明了其法律的阶级本质。()
爬行动物不是两栖动物,两栖动物都是卵生的,所以凡是卵生的动物都不是爬行动物。以下选项与题面推理形式相同的是( )。
下列属于空想社会主义贡献的是
最新回复
(
0
)