首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论下列函数的连续性并判断间断点的类型:
讨论下列函数的连续性并判断间断点的类型:
admin
2018-06-27
78
问题
讨论下列函数的连续性并判断间断点的类型:
选项
答案
(Ⅰ)这是初等函数,它在定义域(x
2
≠1)上连续.因此,x≠±1时均连续.x=±1时, [*] 故x=1是第一类间断点(跳跃的).又[*],故x=-1也是第一类间断点(可去). [*] x≠±1时,|x|<1与|x|>1分别与某初等函数相同,故连续. x=±1时均是第一类间断点(跳跃间断点).因左、右极限均[*],不相等. (Ⅲ)在区间(0,+∞),[-1,0)上函数),分别与某初等函数相同,因而连续.在x=0处y无定义, [*] (Ⅳ)f(x)=[*]是初等函数,在(0,2π)内f(x)有定义处均连续.仅在[*]无定义处及[*]=0处f(x)不连续. 在(0,2π)内[*]因此f(x)的间断点是:[*. 为判断间断点类型,考察间断点处的极限:[*]是第二类间断点(无穷型的).又[*]是第一类间断点(可去型的). (Ⅴ)先求f[g(x)]表达式. [*] 当x>1,x<1时,f[g(x)]分别与某初等函数相同,因而连续.当x=1时,分别求左、右极限 [*] 故x=1为第一类间断点(跳跃间断点).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Iek4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ0)=0.
设函数f(x)连续,则下列函数中,必为偶函数的是
已知函数,设,试求a的取值范围.
设f(x)是连续函数,F(x)是f(x)的原函数,则
已知曲线(a>0)与曲线在点(x0,y0)处有公共切线,求:(1)常数a及切点(x0,y0);(2)两曲线与x轴所围成平面图形绕x轴旋转一周所得旋转体体积Vx.
设4维向量组α=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时α1,α2,α3,α4线性相关?当α1,α2,α3,α4性相关时,求其一个极大线性无关组,并将其余向量用该
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
随机试题
采用调心滚子轴承的主轴修复最好采用刷镀,也可以采用镀铬或其他修复方法。()
生理性运动伪影不包括
A.肝、脾、肾病B.目病、咽喉病、热病C.后头、肩胛病、神志病D.中风、昏迷、热病、头面病E.前头、口齿、咽喉病、胃肠病督脉的主治是
男,39岁,患心衰性水肿,宜选用()。
自然铜的主成分是信石的主成分是
基坑降水设计时,()不正确。
一个可行的方案,技术上必须满足的要求有( )。
使用RAID作为网络存储设备有许多好处,以下关于RAID的叙述中不正确的是(58)。
下列关于实现创建文件操作的描述中,哪一个是错误的?()
Forthispart,youareallowed30minutestowriteashortessayonthetopicMyViewsonExamination.Youshouldwriteatleast
最新回复
(
0
)