首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
已知向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
admin
2020-09-25
134
问题
已知向量组
具有相同的秩,且β
3
可由α
1
,α
2
,α
3
线性表示,求a,b的值.
选项
答案
因为β
3
可由向量组α
1
,α
2
,α
3
线性表示,设β
3
=l
1
α
1
+l
2
α
2
+l
3
α
3
=(α
1
,α
2
,α
3
)[*] 所以线性方程组[*]有解. 对方程组的增广矩阵施以初等行变换,有[*] 因为方程组有解,则系数矩阵的秩与增广矩阵的秩相同,从而可得b=5,而方程组的系数矩阵的秩为2,所以向量组α
1
,α
2
,α
3
的秩也为2,从而可得R(β
1
,β
2
,β
3
)=2,所以行列式 [*] 即[*]=15-a=0.所以a=15.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dWx4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3]如果|A|=1,那么|B|=__________.
[2015年]设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
随机试题
明代戏曲家汤显祖的代表作品是【】
某患者,男,36岁,症见大便秘结,欲便不得,嗳气频作,胸胁痞满,甚则腹中胀痛,纳食减少。舌苔薄腻,脉弦。请回答下列问题:该患者应诊断为
某上市公司2004年3月份销售50台设备给关联企业,每台设备的售价为4万元(不含增值税,下同);销售给非关联企业的设备分别为:按每台售价3.5万元出售30台,按每台售价3.9万元出售50台。假定以上销售均符合收入确认条件,则该公司当月因上述销售业务而确认的
根据《中华人民共和国银行业监督管理法》的规定,对于银行业金融机构重组失败的,国务院银行业监督管理机构可以决定终止重组,由()按照法律规定的程序依法宣告破产。
在受托代理业务中,民间非营利组织对于资产以及资产带来的收益具有控制权。()
简述影响时间知觉的因素。
认知风格就是认知策略。
Retrofittinghousestouselessenergyshouldbeano-brainerforhomeowners.【C1】________time,moneyspentonwaystoreducehea
ItwasProfessorSmith________didtheexperimentinthelabyesterdayevening.
A、Histelephonewentoutoforder.B、Thebuyershadtoleavesoon.C、Hebegantoworkat8a.m.D、Hehadmadeanappointmentwit
最新回复
(
0
)