首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2019-03-22
107
问题
设向量α
1
,α
2
,…,α
t
是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
证一 设有一组数k
1
,k
2
,k
3
,…,kα
t
,使得[*]即 [*] 因已知Aβ≠0,为利用此条件,用A左乘上式两边得 [*] 因为Aβ≠0,所以 [*] 下面利用向量组α
1
,α
2
,…,α
t
的线性无关性证明待证的向量组线性无关.由式①和式②得到 [*] 由于α
1
,α
2
,…,α
t
是AX=0的一个基础解系,故该向量组线性无关,必有k
1
=k
2
=…=k
t
=0, 于是[*]因此,向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关. 证二 下面用向量组秩的性质证明.因向量组的秩经初等变换不变,则 [*] 于是 秩(β,β+α
1
,β+α
2
,…,β+α
t
])=秩(β,α
1
,α
2
,…,α
t
]). 因α
1
,α
2
,α
t
为AX=0的基础解系,故线性无关.而β又不能由α
1
,α
2
,…,α
t
线性表出.事实上,如果β=k
1
α
1
+…+k
1
α
t
,则 Aβ=A(k
1
α
1
+k
2
α
2
+…+k
t
α
t
)=k
1
α
1
+k
2
Aα
2
+…+k
t
Aα
t
=0. 这与Aβ≠0矛盾,故β不能由α
1
,α
2
,…,α
t
线性表出.所以α
1
,α
2
,…,α
t
,β线性无关,即向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/XYP4777K
0
考研数学三
相关试题推荐
设三阶矩阵A的特征值是0,1,一1,则下列选项中不正确的是()
[*](e—2xarctanex+e—x+arctanex)+C
当x→0时,ex一(ax2+bx+1)是比x2高阶的无穷小,则()
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
函数y=C1ex+C2e—2x+xex满足的一个微分方程是()
曲线的斜渐近线方程为________。
设函数f(x),g(x)具有二阶导数,且g"(x)<0。若g(x0)=a是g(x)的极值,则f[g(x)]在x0取极大值的一个充分条件是()
设z=f(z2一y2,exy),其中f具有连续二阶偏导数,求
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
随机试题
男孩,6岁。生后3岁时发现上楼困难,走路无力,易跌倒。小腿腓肠肌假性肥大,智商80,血清CPK高达1200U。下列哪点不是其主要临床特点
医学伦理学基本范畴的良心指的是
心脏的潜在起搏点是
某理财规划师对于单项规划的范围不是很明确,按照科学的理财方案制定标准,消费支出规划的主要内容部包括()。
在漫长的古代社会的专制制度下,长期受到尊崇的是神权、王权,人被分为三六九等,广大民众所享有的权利十分有限,因此,被压迫者为争取人权的斗争从来都没有停止过。下列关于人权的发展历程说法错误的是()。
2,8,32,128,()
根据以下资料。回答下列问题。2016年全年海南省金融业完成增加值280.07亿元,增长15.7%。年末全省金融机构本外币存款余额9120.17亿元,比上年末增长19.4%。其中,非金融业企业存款3213.06亿元,增长28.0%;住户存款3417
在一个局域网上,进行IPv4动态地址自动配置的协议是DHCP协议。DHCP协议可以动态配置的信息是______。
我国研制的银河Ⅲ型超级计算机通过基准程序的测试,其峰值速度是()。
HighwaysintheUSTheUnitedStatesiswell-knownforitsnetworkofmajorhighwaysdesignedtohelpadrivergetfromone
最新回复
(
0
)