首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
admin
2019-03-19
94
问题
设4维向量组α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a,3)
T
,α
4
=(4,4,4,4+a)
T
,问a为何值时,α
1
,α
2
,α
3
,α
4
线性相关?当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.
选项
答案
1 记A=(α
1
,α
2
,α
3
,α
4
),则 [*] =(a+10)a
3
于是当a=0或a=-10时,α
1
,α
2
,a
3
,α
4
线性相关. 当a=0时,α
1
≠0,且α
2
,α
3
,α
4
均可由α
1
线性表出,故α
1
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a=-10时,对A施以初等行变换,有 [*] =(β
1
,β
2
,β
3
,β
4
) 由于β
2
,β
3
,β
4
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
1
=-β
2
-β
3
-β
4
,故α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
. 2 记A=(α
1
,α
2
,α
3
,α
4
),对A施以初等行变换,有 [*] 当a=0时,A的秩为1,因而α
1
,α
2
,α
3
,α
4
线性相关,此时α
1
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a≠0时,再对B施以初等行变换,有 [*] =C=(γ
1
,γ
2
,γ
3
,γ
4
) 如果a≠-10,C的秩为4,从而A的秩为4,故α
1
,α
2
,α
3
,α
4
线性无关. 如果a=-10,C的秩为3,从而A的秩为3,故α
1
,α
2
,α
3
,α
4
线性相关. 由于γ
2
,γ
3
,γ
4
为γ
1
,γ
2
,γ
3
,γ
4
的一个极大线性无关组,且γ
1
=-γ
2
-γ
3
-γ
4
.于是α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/IeP4777K
0
考研数学三
相关试题推荐
设f(t)连续并满足f(t)=cos2t+∫0xf(t)sinsds,求f(t)。
微分方程ydx+(x一3y2)dy=0满足条件y|x=1的特解为________。
设(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
(2018年)设函数f(x)满足f(x+△x)一f(x)=2xf(x)△x+o(△x)(△x→0),且f(0)=2,则f(1)=______.
(2018年)设数列{xn}满足:x1>0,xnexn+1=exn一1(n=1,2,…).证明{xn}收敛,并求.
随机试题
下列四种流量计,那种不属于差压式流量计的是()。
女性,65岁,右乳头瘙痒1年,逐渐加重为刺痛、烧灼感,乳头有碎屑脱皮,轻度糜烂。首先应考虑诊断
某患者因腰椎间盘突出症接受椎间盘摘除术,手术后第1天护士指导其进行直腿抬高练习,目的是为了预防
属于房地产项目价格不确定性因素的是()。
(2007年)图8—79所示电路具有()。
关于投资者参与上网定价发行时进行新股申购的规则和方法,下列说法错误的是()。
对看涨期权而言,若市场价高于协定价格,期权的买方执行期权将有利可图,此时称为()。
2004年1月2日,上海证券交易所发布了上证50指数,它的基期指数为()点。
甲公司2014年1月申请首次公开发行股票并上市,采用网上和网下同时发行的机制,拟发行2亿股,已知发行后股本总额为5亿股,根据《证券发行与承销管理办法》的规定,网下初始发行的股份数额最少为()。
Fromwhatweread,weknowthat______.WhatdidtheteacherthinkofJesusChrist?
最新回复
(
0
)