首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程(3x2+2xy—y2)dx+(x2一2xy)dy=0的通解.
求微分方程(3x2+2xy—y2)dx+(x2一2xy)dy=0的通解.
admin
2018-08-22
105
问题
求微分方程(3x
2
+2xy—y
2
)dx+(x
2
一2xy)dy=0的通解.
选项
答案
方法一 原方程化为3x
2
dx+(2xy一y
2
)dx+(x
2
一2xy)dy=0,即 d(x
3
)+d(x
2
y一xy
2
)=0, 故通解为x
3
+x
2
y一xy
2
=C,其中C为任意常数. 方法二 令y=xu,则 [*] 即[*]解得u
2
一u一1=Cx
-3x
,即y
2
一xy一x
2
=Cx
-1
或xy
2
一x
2
y—x
3
=C,其中C为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dHj4777K
0
考研数学二
相关试题推荐
设(1)计算A2,并将A2用A和E表出;(2)设A是二阶方阵,当k>2时,证明:Ak=O的充分必要条件为A2=O.
变换二次积分的积分次序:
证明:函数f(x)在x0处可导的充要条件是存在一个关于△x的线性函数L(△x)=α△x,
证明:不等式1+xln(x+一∞<x<+∞.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT;
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×m中元素aij的代数余子式(i,j=1,2,…,n),二次型记x=(x1,x2,……xn)T,把f(x1,x2,……xn)写成矩阵形式,并证明二次型f(x)的矩阵为A一1;
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足tr(A)=一6.AB=C,其中求出该二次型f(x1,x2,x3).
设函数f(x)在区间[0,+∞)上连续且单调增加,证明g(x)=在[0,+∞)上也单调增加.
(1995年)设f(χ)和φ(χ)在(-∞,+∞)内有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则
设实对称矩阵A=,求可逆矩阵P,使P一1AP为对角矩阵,并计算行列式|A一E|的值.
随机试题
治疗石淋的肾阴亏虚证,应选用()(2004年第142题)
“他的病好多了”中的补语类型为()。
弥漫性毛细血管内增生性肾小球肾炎最主要的病变是
A、已知的不良反应B、常见的不良反应C、新的和严重的不良反应D、所有的不良反应根据《药品不良反应报告和监测管理办法》进口药品自首次获准进口之日起5年内,应报告该药品的
乘数理论是一把“双刃剑”,增加需求导致国民收入成倍的增加,减少需求同样将导致国民收入成倍的减少。()
下列关于借款人缩短借款期限,说法有误的是()。
【资料】某市一位优秀的班主任李某,只因为按照规定减轻学生的负担,放手培养学生的创新能力,却使班级的综合成绩下降到年级组的倒数第二名,成为差班之一。压力之下,在寒假之前的家长会上,这位教师哭着向家长们鞠躬道歉,并表示今后将加大作业量。下列关于素质教育的说
()不完全属于一般市场经济国家基本的宏观调控目标。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性()
资本主义国家的选举是资产阶级制定某种原则和程序,通过竞选产生议会和国家元首的一种政治机制,资本主义国家竞选制度的实质是
最新回复
(
0
)