首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组a1,a2,…,am线性无关的充分必要条件是( ).
向量组a1,a2,…,am线性无关的充分必要条件是( ).
admin
2013-09-03
87
问题
向量组a
1
,a
2
,…,a
m
线性无关的充分必要条件是( ).
选项
A、向量组a
1
,a
2
,…,a
m
,β线性无关
B、存在一组不全为零的常数k
1
,k
2
,…,k
m
,使得k
1
a
1
+k
2
a
2
+…+k
m
a
m
≠0
C、向量组a
1
,a
2
,…,a
m
的维数大于其个数
D、向量组a
1
,a
2
,…,a
m
的任意一个部分向量组线性无关
答案
D
解析
(A)不对,因为a
1
,a
2
,…,a
m
,β线性无关有a
1
,a
2
,…,a
m
线性无关,但反之不成立;(B)不对,因为a
1
,a
2
,…,a
m
线性无关,则对任意一组非零常数k
1
,k
2
,…,k
m
使得k
1
a
1
+k
2
a
2
+…+k
m
a
m
≠0,但反之不成立;(C)向量组a
1
,a
2
,…,a
m
线性无关不能得到其维数大于其个数,如a
1
=
线性无关,但其维数等于其个数,故选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/dD54777K
0
考研数学一
相关试题推荐
求函数f(x,y)=x2+2y2在约束条件x2+y2=1下的最大值和最小值.
设z=z(x,y)是由方程f(y-x,yz)=0所确定的隐函数,其中函数f对各个变量具有连续的二阶偏导数,求
设线性方程组证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;
已知线性方程组a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解.
设向量组α1,α2,α3是Ax=b的3个解向量,且r(A)=1,α1+α2=(1,2,3)T,α2+α3=(0,-1,1)T,α3+α1=(1,0,-1)T,求Ax=b的通解.
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0()
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设f(x,y)连续,改变下列二次积分的积分次序:
设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数.A=(α1,α2,α3,α4),则()
一容器内表面是由曲线y=x2(0≤x≤2,单位:m)绕y轴旋转一周所得到的曲面,现以2m3/min的速率注入某液体,求:当液面升高到1m时液面上升的速率.
随机试题
对比剂应具备的条件,错误的描述是
治疗哮喘,定喘穴常用()治疗哮喘,风寒者宜用()
关于评标委员会组成的说法,正确的是()
背景某高层建筑幕墙节能工程主楼为玻璃幕墙,裙楼为石材和单层铝板幕墙。玻璃幕墙采用穿条工艺生产的隔热铝型材,中空低辐射(Low—E)镀膜玻璃,非透明(石材、铝板)幕墙内侧采用岩棉保温层。工程施工过程中监理公司对下列问题提出异议:(1)隔热
()指经国务院批准并对贷款可能造成的损失采取相应补救措施后责成国有独资商业银行发放的贷款。
居民委员会是( )的基本组织形式。
在确立以夏、商、周为核心的中国上古史基本框架的基础上,“夏商周断代工程”将历谱推定、文献梳理、考古与碳十四测定等课题研究成果加以整合,提出了夏商周年表。尽管这个年表还有不够________之处,但它的提出毕竟标志着中国的上古史已不是________的传说,
喜欢甜味的习性曾经对人类有益,因为它使人在健康食品和非健康食品之间选择前者。例如,成熟的水果是甜的,不成熟的水果则不甜,喜欢甜味的习性促使人类选择成熟的水果。但是,现在的食糖是经过精制的。因此,喜欢甜味不再是一种对人有益的习性,因为精制食糖不是健康食品。以
TheLarsenBiceshelfcoveredmorethan3,000squarekilometersandwas(36)metersthickuntilitsnorthernpart(37)inthe1
Sheisbyfar(active)______memberinourgroup.
最新回复
(
0
)