首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数.A=(α1,α2,α3,α4),则( )
设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数.A=(α1,α2,α3,α4),则( )
admin
2021-02-25
75
问题
设非齐次线性方程组Ax=β的通解为x=k
1
(1,0,0,1)
T
+k
2
(2,1,0,1)
T
+(1,0,1,2)
T
,其中k
1
,k
2
为任意常数.A=(α
1
,α
2
,α
3
,α
4
),则( )
选项
A、β必可由α
1
,α
2
线性表示.
B、β必可由α
1
,α
2
,α
4
线性表示.
C、β必可由α
3
,α
4
线性表示.
D、β必可由α
4
,α
1
线性表示.
答案
C
解析
本题考查非齐次线性方程组通解的结构和常数项向量与系数矩阵的列向量的关系.
由题意知ξ
1
=(1,0,0,1)
T
,ξ
2
=(2,1,0,1)
T
为齐次线性方程组Ax=0的解,即Aξ
1
=0,Aξ
2
=0,可得α
1
+α
4
=0,2α
1
+α
2
+α
4
=0,则α
1
=-α
4
,α
2
=α
4
,又η=(1,0,1,2)
T
为Ax=β的解,即有
β=α
1
+α
3
+2α
4
=α
3
+α
4
.
故知β可由α
3
,α
4
线性表示,故应选C.
转载请注明原文地址:https://www.kaotiyun.com/show/Ya84777K
0
考研数学二
相关试题推荐
设f(x)为连续函数,试证明:若f(x)为奇函数,则f(x)的一切原函数均为偶函数;若f(x)为偶函数,则有且仅有一个原函数为奇函数.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设A是n阶可逆阵,其每行元素之和都等于常数a,证明:(1)a≠0;(2)A-1的每行元素之和均为.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c是唯一的.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设A=,则下列矩阵中与A合同但不相似的是
随机试题
我们党全面阐述社会主义初级阶段理沦是在()
在党的“十八大”明确提出大力堆进生态文明建设的总体要求基础上,十八届三中全会进一步强调,要()
定期X线片检查属于牙周病预防的是
下列不是治疗月经病的是()
地理信息系统调试的方法不包括()。
在计算加权平均资金成本时,应()。
__________是贯穿《中小学教师职业道德规范》的核心和灵魂。
作为曾经的媒介大亨,报纸的影响力已经_________,互联网、手机的普及,让现代人获取信息的方式发生了_________的变化,报纸媒体的阅读群体日益萎缩,新媒体留给报纸媒体的发展空间已经越来越小。依次填入画横线部分最恰当的一项是()。
在市场经济条件下,能够自发地调节劳动力和生产资料在社会生产各部门之间的分配,使之大体保持平衡的信号是()。
某网络能够传送的最大数据长度为1500字节。假设有一数据报,其长度为4000字节(固定首部长度),那么应当对此数据报进行怎样的处理?数据报片的数据字段长度、片偏移字段各是多少?
最新回复
(
0
)