首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=l. 存在两个不同的点η,,使得f’(η) f’()=1.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=l. 存在两个不同的点η,,使得f’(η) f’()=1.
admin
2019-08-26
62
问题
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=l.
存在两个不同的点η,
,使得f’(η) f’(
)=1.
选项
答案
因f (x)在[0,ε],[ε,1]上连续,在(0,ε),(ε,1)上可导,f (x)在[0,ε]和[ε,1]上均满足拉格朗日中值定理的条件,应用拉格朗日中值定理可知,存在[*],使得 [*] 则[*]
解析
【思路探索】利用零点定理证明第一题,利用拉格朗日中值定理证明第二题.
转载请注明原文地址:https://www.kaotiyun.com/show/cSJ4777K
0
考研数学三
相关试题推荐
向量组α1=(1,一1,3,0)T,α2=(一2,1,a,1)T,α3=(1,1,一5,一2)T的秩为2,则a=___________.
求下列极限:
已知(X,Y)的概率分布为(Ⅰ)求Z=X—Y的概率分布;(Ⅱ)记U1=XY,V1=,求(U1,V1)的概率分布;(Ⅲ)记U2=max(X,Y),V2=min(X,Y),求(U2,V2)的概率分布及U2V2的概率分布.
将下列函数在指定点处展开成幂级数:f(x)=,在x=1处.
求下列定积分:
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记f(X)=XTAX/XTX,X∈Rn,X≠0证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设函数z=f(x,y)在点(x0,y0)的某邻域内有定义.且在点(x0,y0)处的两个偏导数f’x(x0,y0),f’y(x0,y0)都存在,则
随机试题
心源性水肿的特点为
激期佝偻病的血生化变化是
放坡基坑施工中,当边坡有失稳迹象时,应及时采取()或其他有效措施。
下列关于封闭式基金与开放式基金的说法,错误的是()。
对附有回售条款的可转换公司债券持有人而言,当标的公司股票价格在一段时间内连续低于转股价格达到一定幅度时,把债券卖回给债券发行人,将有利于保护自身的利益。()
下列情形属于主管税务机关可要求纳税人进行土地增值税清算的是()。
习近平总书记在十二届全国人大二次会议安徽代表团参加审议时,关于推进作风建设的讲话中提到“三严三实”,请问“三严三实”具体指的是什么?
从领导的性质来看,领导具有自然属性和()的双重属性。
稻谷:大米
TwocitiesthatlayattheedgeoftheMediterraneanmorethan1.200yearsago,HerakleionandEasternCanopus.disappearedsudd
最新回复
(
0
)