首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=_______.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=_______.
admin
2018-07-26
74
问题
设A=(a
ij
)是3阶非零矩阵,|A|为A的行列式,A
ij
为a
ij
的代数余子式.若a
ij
+A
ij
=0(i,j=1,2,3),则|A|=_______.
选项
答案
-1.
解析
由A≠O,不妨设a
11
≠0,由已知的A
ij
=-a
ij
(i,j=1,2,3),得
及A=-(A
*
)
T
,其中A
*
为A的伴随矩阵.以下有两种方法:
方法1:用A
T
右乘A=-(A
*
)
T
的两端,得
AA
T
=-(A
*
)A
T
=-(AA
*
)
T
=-(|A|I)
T
,
其中I为3阶单位矩阵,上式两端取行列式,得
|A|
2
=(-1)
3
|A|
3
,或|A|
2
(1+|A|)=0,
因|A|≠0,所以|A|=-1.
方法2:从A=-(A
*
)
T
两端取行列式,并利用|A
*
|=|A|
2
,得
|A|=(-1)
3
|A
*
|=-|A|
2
,或|A|(1+|A|)=0,
因|A|≠0,所以|A|=-1.
转载请注明原文地址:https://www.kaotiyun.com/show/OTW4777K
0
考研数学三
相关试题推荐
设某商品的需求量Q是单价P(单位:元)的函数Q=12000-80P;商品的总成本C是需求量Q的函数C=25000+50Q;每单位商品需要纳税2元,试求使销售利润最大的商品单价和最大利润额.
设随机变量X的分布律为求X的分布函数F(x),并利用分布函数求P{2<X≤6},P{X<4},P{1≤X<5}.
设A是n阶矩阵,Am=0,证明E-A可逆.
(Ⅰ)设函数y=y(x)由方程sin(x2+y2)+ex-xy2=0所确定,求(Ⅱ)设函数y=y(x)由方程x3+y3-sin3x+6y=0所确定,求dy|x=0;(Ⅲ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
已知向量组α1=(1,2,-1,1)T,α2=(2,0,a,0)T,α3=(0,-4,5,1-a)T的秩为2,则a=______.
假设从单位正方形区域D={(x,y)|0≤x≤1,0≤y≤1}中随机地选取一点,以该点的两个坐标x与y作为直角三角形的两条直角边,求该直角三角形的面积大于的概率p.
设4阶矩阵A的秩为2,则r(A*)=_____.
向量组α1=(1,0,1,2)T,α2=(1,1,3,1)T,α3=(2,-1,a+1,5)T线性相关,则a=_______.
计算行列式|A|=之值.
设λ=2是可逆矩阵A的一个特征值,则的一个特征值是
随机试题
营养学上将食物分成5大类,尤以粮食类、豆奶类和蔬菜水果类是每日膳食必不可少的。()
在影像总模糊的因素中,最大模糊是
A.2个B.3个C.5个D.8个E.10个正常前列腺液白细胞数每高倍视野不超过
下列关于涎腺肿瘤的叙述,不正确的是
案例2006年4月11日23时20分,F钢铁公司转炉停炉检修结束后,该厂设备作业长指挥测试氧枪,不到2min的时间,约1685m3氧气从氧枪喷出后被吸入烟道排除,飘移近3000m到达烟道风机处。23时30分,检修烟道风机的1名钳工衣服被溅上
建设工程设计阶段,监理单位的工作内容主要是( )。
下列对施工合同谈判过程中经常遇到的问题处理,说法错误的是()。
业主委员会与物业管理公司签订的《物业服务合同》于2003年5月16日依法生效,合同约定业主应当与每月20日前缴纳清上月物业服务费用。但某业主从2004年3月起没有缴纳物业服务费用。物业管理公司如果要起诉该业主,则起诉的诉讼时效至()届满。
如果类A被说明成类B的友元,则
ItwasClark’sfirstvisittoLondonUndergroundRailway.Against【C1】______adviceofhisfriends,hedecidedtogothereafter
最新回复
(
0
)