首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,1,0,2)T,α2=(一1,1,2,4)T,α3=(2,3,a,7)T,α4=(一1,5,一3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
已知α1=(1,1,0,2)T,α2=(一1,1,2,4)T,α3=(2,3,a,7)T,α4=(一1,5,一3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
admin
2018-06-14
77
问题
已知α
1
=(1,1,0,2)
T
,α
2
=(一1,1,2,4)
T
,α
3
=(2,3,a,7)
T
,α
4
=(一1,5,一3,a+6)
T
,β=(1,0,2,b)
T
,问a,b取何值时,(Ⅰ)β不能由α
1
,α
2
,α
3
,α
4
线性表示?(Ⅱ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法唯一;(Ⅲ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法不唯一,并写出此时表达式.
选项
答案
设x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β,对增广矩阵(α
1
,α
2
,α
3
,α
4
┆β)作初等行变换,有 [*] (Ⅰ)当a=1,b≠2或a=10,b≠一1时,方程组均无解.所以β不能由α
1
,α
2
,α
3
,α
4
线性表出. (Ⅱ)当a≠1且a≠10时,[*]b方程组均有唯一解.所以β能用α
1
,α
2
,α
3
,α
4
线性表示且表示法唯一。 (Ⅲ)方程组在两种情况下有无穷多解,即(1)当a=10,b=一1时,方程组有无穷多解: [*] (2)当a=1,b=2时,方程组有无穷多解:x
4
=一[*],x
2
=t,x
3
=1一2t,x
1
=5t一[*], 即 β=(5t一[*])α
1
+tα
2
+(1—2t)α
3
一[*]α
4
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/t1W4777K
0
考研数学三
相关试题推荐
求微分方程的通解.
设L:y=sinx(0≤x≤),由x=0、L及y=sint围成面积S1(t);由y=sint、L及x=围成面积S2(t),t其中0<t<t取何值时,S(t)=S1(t)+S2(t)取最大值?
求下列极限:
设为两个正项级数.证明:若发散.
求下列极限:
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
已知A是3阶实对称矩阵,且Aα=α,其中α=(1,1,2)T.如果A的另外两个特征值是2和-1,又λ=2的特征向量是(2,0,-1)T,则λ=-1的特征向量是________.
求下列极限:
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
随机试题
早慧的儿童自幼表现出智力超常,长大后一定会有突出的成就。()
注册会计师李浩在对华兴公司2010年年报审计中负责存货监盘工作,在实施存货监盘时发现如下事项:(1)存货d没有悬挂盘点,经询问华兴公司称该批产品已经出售给H公司。(2)存货e已经过了保质期。(3)存货f中混有华兴公司为c公司代保管的存货。(4)对于
阶级消灭和国家消亡是在
芒硝泻下作用的特点是
功能活血利尿,兼可清热解毒的药是
与其他基金相比,货币市场基金具有风险低、流动性好的特点。()
邓小平指出:“不讲多劳多得,不重视物质利益,对少数先进分子可以,对广大群众不行,一段时间可以,长期不行。革命精神是非常宝贵的,没有革命精神就没有革命行动。但是,革命是在物质利益的基础上产生的,如果只讲牺牲精神,不讲物质利益,那就是唯心论。”这段话意在强调把
设f(x)在x=2处可导,且=2,则f(2)=______,f’(2)=______.
执行下面的程序段后,102H单元中的数据是( )。 ORG 100H DAT DB 12H,13H;14H MOV BX,OFFSET DAT
OnthenightofOctober9,1799,aBritishvesselranaroundneartheDutchcoast,brokeupandsank.Itwasestimatedthat$100
最新回复
(
0
)