首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,且Aα=α,其中α=(1,1,2)T. 如果A的另外两个特征值是2和-1,又λ=2的特征向量是(2,0,-1)T,则λ=-1的特征向量是________.
已知A是3阶实对称矩阵,且Aα=α,其中α=(1,1,2)T. 如果A的另外两个特征值是2和-1,又λ=2的特征向量是(2,0,-1)T,则λ=-1的特征向量是________.
admin
2016-10-20
93
问题
已知A是3阶实对称矩阵,且Aα=α,其中α=(1,1,2)
T
.
如果A的另外两个特征值是2和-1,又λ=2的特征向量是(2,0,-1)
T
,则λ=-1的特征向量是________.
选项
答案
k(1,-5,2)
T
,k≠0.
解析
对于实对称矩阵,特征值不同特征向量相互正交.
设λ=-1的特征向量是(x
1
,x
2
,x
2
)
T
,则
得基础解系(1,-5,2)
T
.
所以λ=-1的特征向量是k(1,-5,2)
T
,k≠0.
转载请注明原文地址:https://www.kaotiyun.com/show/WMT4777K
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设A是n×m矩阵,B是m×n矩阵,其中n
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
A是n阶矩阵,且A3=0,则().
随机试题
《中国药典》附录部分收载的主要内容有()
某医生值班,凌晨2时接到电话被告知有一名住院的新生儿(日龄3天)突然出现呼吸困难,面色发绀,吐奶两次,该医生应该
患者,男性,37岁,近3年饮食没有规律,并嗜烟、酒,出现饥饿痛及半夜痛醒。进餐或服用碱性药物可使症状缓解。4h前饱餐后,患者突然感到上腹部剧痛,旋即向全腹扩散,出冷汗,平卧不敢翻身。查体:体温正常,脉搏有力,89次/min;腹部平坦、无胃型,腹式呼吸表
在自动扶梯空载制动试验中,应检查符合标准规范要求的是()。
工资单价除了基本了资外,还包括( )。
K线图的4个价格中,()最为重要。
A公司为增值税一般纳税人,2017年4月在财产清查中发现盘亏甲材料500千克,实际购入成本为600元/千克。经查属于管理不善造成的损失,由过失人赔款1000元,保险公司赔款2000元,则处理后有关存货盘亏的净损失处理正确的是()。
货币市场有许多子市场,下列()不属于货币市场。
下列程序的输出结果是#includevoidmain(){char*str="12123434";intx1=0,x2=0,x3=0,x4=0,i;for(i=0;str[i]!=’\0’;i++)
Whataretheytalkingabout?
最新回复
(
0
)