首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 微分方程yy"+y′2=0满足初始条件y∣x=1=1,y′∣x=1=1/2的特解是________.
[2002年] 微分方程yy"+y′2=0满足初始条件y∣x=1=1,y′∣x=1=1/2的特解是________.
admin
2021-01-19
109
问题
[2002年] 微分方程yy"+y
′2
=0满足初始条件y∣
x=1
=1,y′∣
x=1
=1/2的特解是________.
选项
答案
因所给方程为不显含自变量x的可降阶方程.令y′=P(y),则y"=p[*],将其代入原方程即可求得其解.也可用凑导数法求之. 解一 令y′=P(y),则y"=P[*],代入原方程,得到p(y[*]+p)=0.因p=0不满足初始条件,应舍去,得到[*].积分后得到p=[*],将初始条件代入得到C
1
=[*]再对[*],即2ydy=dx积分,得到y
2
=x+C
2
,代入初始条件得出C
2
=1,于是y
2
=x+1.再由y∣
x=1
=1得到特解y=[*]. 解二 用凑导数法解之.原方程可化为(yy′)′=0,两边积分得到∫(yy′)′dx=C
1
,即 yy′=C
1
.由所给的初始条件易求得C
1
=1/2,于是yy′=1/2.两边积分得到 ∫yy′dx=∫ydy=[*]x+C
2
, 即[*]+C
2
. 由初始条件y∣
x=1
=1,得到C
2
=1/2,于是有 y
2
=x+l, 即 y=[*](因y∣
x=1
>0).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/bk84777K
0
考研数学二
相关试题推荐
设向量α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,-1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5).问:a,b为何值时,β不能用α1,α2,α3,α4线性表示;a,b为何值时,β能用α1,α2,α3,α4线性
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。求方程组(1)的一个基础解系;
(1)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(2)证明可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且并
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。求导数f’(x);
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(Ⅰ)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
由已知条件,应先求出f(x)的表达式再进行积分,[*]
定积分中值定理的条件是f(x)在[a,b]上连续,结论是___________。
(01年)求极限记此极限为f(x).求函数f(x)的间断点并指出其类型.
(2011年)设函数z=f(χy,yg(χ)),其中函数f具有二阶连续偏导数,函数g(χ)可导且在χ=1处取得极值g(1)=1.求
随机试题
A.负压吸引人工流产B.钳刮术C.肌注天花粉引产D.水囊引产E.刮宫产
慢性萎缩性胃炎需转诊治疗的是
免疫接种后首先产生的抗体是
A、消除B、肠肝循环C、生物转化D、生物等效性E、酶诱导作用某些药物可使体内药酶活性、数量升高
硬膜下积液皮肤瘀斑,涂片检菌阳性
该病辨证为()若病情出现腹满不减,大便不通,可加重攻泻之力,上方可合用()
(2009年)在低碳钢拉伸实验中,冷作硬化现象发生在()。
下列关于资产或负债计税基础的表述中,正确的有()。
国家统计局数据显示,2016年年末,全国规模以上中小工业企业(以下简称“中小企业”)37.0万户,比2015年年末增加0.5万户企业,其中,中型企业5.4万户,占中小企业户数的14.6%,小型企业31.6万户,占中小企业户数的85.4%。分地区
某二叉树的前序序列为ABCDEFG,中序序列为DCBAEFG,则该二叉树的后序序列为
最新回复
(
0
)