首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T求方程组的通解。
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T求方程组的通解。
admin
2019-06-29
91
问题
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η
1
,η
2
,η
3
,且η
1
+2η
2
=(2,0,5,-1)
T
,η
1
+2η
3
=(4,3,-1,5)
T
,η
3
+2η
1
=(1,0,-1,2)
T
求方程组的通解。
选项
答案
由η
1
+2η
2
=(2,0,5,-1)
T
,η
1
+2η
3
=(4,3,-1,5)
T
,η
3
+2η
1
=(1,0,-1,2)
T
可得 [*] 原方程所对的齐次线性方程组的解为 η
3
-η
1
=(3,3,0,3)
T
,η
2
-η
1
=(2,[*],3,0)
T
, 显然以上两个向量是线性无关的,而四元非齐次线性方程组系数矩阵的秩为2,故基础解系只含有两个向量,所以方程组的通解为 [*] 其中c
1
,c
2
为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HzN4777K
0
考研数学二
相关试题推荐
设矩阵,且方程组Ax=β无解。求a的值;
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组。
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。P为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵。若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=。若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=()
设m,n均是正整数,则反常积分∫01dx的收敛性()
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线l:y(x)上的任意一点。l在P处的切线与y轴相交于点(0,Yp),法线与x轴相交于点(Xp,0),若Xp=Yp,求l上点的坐标(x,y)满足的方程。
设f(x)在x=0的某邻域内有连续导数,且求f(0)及f’(0).
随机试题
正常生理情况下,可摄取利用甘油的细胞为
下列选项中属于特异性免疫分子的是
下列有关心绞痛用药的叙述,错误的是
属于地块指导性指标的是()。
在交易性金融资产持有期间被投资方宣告分派现金股利或利息时,可能涉及的会计科目有()。
下列各项中,符合我国资源税法律制度规定应征收资源税的有()。
当前,我国构建社会主义和谐社会的重要性和紧迫性体现在()。
在数据库应用系统生命周期中,当逻辑设计阶段完成后进入到物理设计阶段。下列不属于物理设计阶段活动的是()。
Watercoloristheoldestpaintingmediumknown.Itdatesbacktotheearlycavedwellers’whodiscoveredtheycouldaddlifelike
Whenolderpeoplecannolongerremembernamesatacocktailparty,theytendtothinkthattheirbrainpowerisdeclining.Buta
最新回复
(
0
)