首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。 求导数f’(x);
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。 求导数f’(x);
admin
2019-06-28
85
问题
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f
’
(x)+f(x)一
∫
0
x
f(t)dt=0。
求导数f
’
(x);
选项
答案
由题设知 (x+1)f
’
(x)+(x+1)f(x)一∫
0
x
f(t)dt=0。 上式两边对x求导,得 (x+1)f
’’
(x)=一(x+2)f
’
(x), 即有[*]。 两边积分,得 ln|f
’
(x)|=一x一ln(x+1)+C
1
, 所以 f
’
(x)=[*]。 在题设等式中令x=0,得f
’
(0)+f(0)=0。又已知f(0)=1,于是f
’
(0)=一1,代入f
’
(x)的表达式,得C=一1,故有 f
’
(x)=[*]。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5dV4777K
0
考研数学二
相关试题推荐
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则,其中l1≠0。
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
现有四个向量组①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T;②(a,1,6,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求可逆矩阵尸使得P-1AP=A。
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT。求A2;
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,-1)=_______.
设z=f(t,et)dt,其中f是二元连续函数,则dz=________.
设数列{xn}满足:x1>0,(n=1,2,…).证明{xn}收敛,并求
求极限:.
随机试题
氨气试验时,若焊缝区有泄漏,则硝酸汞试纸的相应部位将呈现()色斑纹。
在共产党领导的多党合作和政治协商制度中,民主党派是在野党。()
关于脑垂体的叙述,正确的是
A.夹气B.垂泉C.掠草D.滚蹄E.三江治疗马屈肌腱挛缩宜选
对肺结核病人的护理措施不包括
秦某租住江某房屋,后伪造江某的身份证和房屋所有权证,将房屋卖给不知情的吴某。房屋登记部门办理过户时未发现材料有假,便向吴某发放了房屋所有权证。江某发现房屋被卖时秦某已去向不明。江某以登记错误为由,提起行政诉讼要求撤销登记。下列哪些选项是正确的?
担保合同是被担保合同的从合同,被担保合同是主合同,主合同无效,从合同也无效。但担保合同另有约定的按照约定执行。()
我们平时所讲的“举一反三”“闻一知十”属于下列迁移中的()。(2015.山东)
著作权包含以下人身权和财产权:发表权、署名权、网络传播权、应当由著作权人等拥有的其他权利。作品一旦创作出来就具有著作权。著作权法规定,计算机软件也是作品,其著作权和其他作品的著作权没有本质区别,如果你经过原著作者的同意,那么只要你对创作做了五分之四的修改并
甲、乙两个公司共有多少人?( )如果90分以上为优秀,甲公司的优秀率是多少?( )
最新回复
(
0
)