首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)可导,下述命题: ①F’(x)为偶函数的充要条件是F(x)为奇函数; ②F’(x)为奇函数的充要条件是F(x)为偶函数; ③F’(x)为周期函数的充要条件是F(x)为周期函数. 正确的个数是 ( )
设F(x)可导,下述命题: ①F’(x)为偶函数的充要条件是F(x)为奇函数; ②F’(x)为奇函数的充要条件是F(x)为偶函数; ③F’(x)为周期函数的充要条件是F(x)为周期函数. 正确的个数是 ( )
admin
2018-12-21
133
问题
设F(x)可导,下述命题:
①F
’
(x)为偶函数的充要条件是F(x)为奇函数;
②F
’
(x)为奇函数的充要条件是F(x)为偶函数;
③F
’
(x)为周期函数的充要条件是F(x)为周期函数.
正确的个数是 ( )
选项
A、0.
B、1.
C、2
D、3.
答案
B
解析
②是正确的.设F
’
(x)=f(x)为奇函数,则
φ(x)=∫
0
x
f(t)dt必是偶函数.证明如下:
φ(-x)=∫
0
-x
f(t)dt=∫
0
x
f(-t)-dt=∫
0
x
f(t)dt=φ(x).
又因f(x)的任意一个原函数必是φ(x)﹢C的形式,所以f(x)的任意一个原函数必是偶函数.必要性证毕.
设F(x)为偶函数,则F(x)=F(-x),
两边对x求导,得F
’
(x)=-F
’
(-x)
所以F
’
为基函数,充分性证毕.
①是不正确的.反例:(x
3
﹢1)
’
=3x
2
为偶函数,但x
3’
﹢1并非奇函数,必要性不成立.
③是不正确的.反例:(sin x﹢x)
’
=cos x﹢1为周期函数,但sin x﹢x不是周期函数,必要性不成立.
转载请注明原文地址:https://www.kaotiyun.com/show/U8j4777K
0
考研数学二
相关试题推荐
(2011年)设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Aχ=0的一个基础解系,则A*χ=0的基础解系可为【】
(2002年)位于曲线y=χe-χ(0≤χ<+∞)下方,χ轴上方的无界图形的面积是________.
(2012年)已经知A=,二次型f(χ1,χ2,χ3)=χT(ATA)χ的秩为2.(Ⅰ)求实数a的值;(Ⅱ)求正交变换χ=Qy将f化为标准形.
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ2-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数.(Ⅰ)写出f(χ)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(χ)在χ=
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=_______.
(1993年)设χ>0,常数a>e,证明:(a+χ)a<aa+χ
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
随机试题
犯罪嫌疑人周某和被害人赵某系多年邻居,两人积怨甚深。一日两人又因生活琐事发生口角,周某气愤之下,随手抄起木棒猛击赵某的头部,致其当场昏倒在地。被送往医院,经检查,赵某颅脑损伤,住院治疗2个月后痊愈,共花去医疗费用3万余元。公安机关对本案侦查终结后,以涉嫌故
下列()选项的内容不是Web2.0的特点。
患者女,46岁。两眼不能完全睁开,全身无力,前纵隔内发现肿块,最可能的是
婴幼儿腹泻最常见的病原是
不属于糖皮质激素类药物抗休克作用机制的是
某施工单位承揽了一项综合办公楼的总承包工程,在施工过程中发生了如下事件。事件1:施工单位与某材料供应商所签订的材料供应合同中未明确材料的供应时间。急需材料时,施工单位要求材料供应商马上将所需材料运抵施工现场,遭到材料供应商的拒绝,两天后才将材料运到施工现
下列职责中,属于监理员的职责为( )。
随同产品出售并单独计价的包装物,其成本应计入()。
【H1】【H14】
Veryfewscientists______withcompletelynewanswerstotheworld’sproblems.(1996年考试真题)
最新回复
(
0
)