首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1= (1)求常数a,b,c; (2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1= (1)求常数a,b,c; (2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
admin
2017-09-15
99
问题
设A=
的一个特征值为λ
1
=2,其对应的特征向量为ξ
1
=
(1)求常数a,b,c;
(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵.若不可对角化,说明理由.
选项
答案
(1)由Aξ
1
=2ξ
1
, [*] (2)由|λE-A=[*]=0,得λ
1
=λ
2
=2,λ
3
=-1. 由(2E-A)X=0,得 [*] 由(-E-A)X=0,得α
3
=[*] 显然A可对角化,令P=[*] 则P
-1
AP=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0Bk4777K
0
考研数学二
相关试题推荐
[*]
利用二阶导数,判断下列函数的极值:(1)y=x3-3x2-9x-5(2)y=(x-3)2(x-2)(3)y=2x-ln(4x)2(4)y=2ex+e-x
下列函数可以看成是由哪些简单函数复合而成?(其中a为常数,e≈2.71828)
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
设矩阵,问当k为何值时,存在可逆矩阵P,使得P-1AP为对角矩阵?并求出P和相应的对角矩阵.
n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的
随机试题
《灵枢.五色篇》把眉间部位称为()(1995年第15题)
目前临床上推广使用的交叉配血方法为
手术切断后会导致肛门失禁的组织是
A.酒中的乙醇B.茶叶中的鞣酸C.食醋中的醋酸D.食盐中的氯化钠E.烟中的烟碱能与胃蛋白酶、胰酶、淀粉酶中的蛋白结合,减弱其助消化药效的是
“宗教信仰”属于市场细分中的()细分变量?
各区、县人民政府,市政府各委、办、局,各市属机构:2012年6月,国务院印发了《关于加强食品安全工作的决定》(国发[2012]20号,以下简称《决定》),明确了加强食品安全工作的指导思想、总体要求、工作目标和具体措施。为进一步加强本市食品安全工作
党在过渡时期总路线的“两翼”是指()
若有以下程序voidflintx){if(x>=10)f(z);}{printf("%d-",x%10);f(x/10);}main(){int}z=123456;elseprintf("%d",x);}则程序的输出结果是
Howlongdoesittakefromheretothepestofficeonfoot?
AdvertisingisamultibilliondollarbusinessintheUnitedStates.Morethan33billiondollarsarespenteachyearforadverti
最新回复
(
0
)