首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上有二阶导数,且f’’(x)≤0.证明
设f(x)在[a,b]上有二阶导数,且f’’(x)≤0.证明
admin
2020-03-15
88
问题
设f(x)在[a,b]上有二阶导数,且f’’(x)≤0.证明
选项
答案
用泰勒公式证不等式,可按下述步骤进行: (1)先写出比题设条件低阶的函数f(x)的泰勒展开式,即在点x
0
∈(a,b)处展成一阶泰勒公式: [*] (2)恰当选择上式右边的x
0
.因待证的不等式中出现[*]是恰当的.将[*]代入上式,得到 [*] (3)利用题设给出的高阶导数的大小或界对上述展开式进行放缩. [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/TpA4777K
0
考研数学二
相关试题推荐
设向量组(Ⅰ)可以由向量组(Ⅱ)线性表示,且R(Ⅰ)=R(Ⅱ),证明:向量组(Ⅰ)与(Ⅱ)等价。
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:(M1,—M2,…,(—1)n—1Mn)是方程组的一个解向量。
[2008年](I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a).(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点
[20l0年]设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2.
[2007年]设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b)使得f″(ξ)=g″(ξ).
[2009年](I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
[2006年]设数列{xn}满足0<x1<π,xn-1=sinxn(n=1,2,…).证明xn存在,并求该极限.
[2008年]设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意t∈[0,+∞),由直线x=0,x=t,曲线y=f(x)以及z轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函
随机试题
(2014年第23题)胰高血糖素调节糖代谢的主要靶器官或靶组织是
患者男性,40岁,做销售员10年。有不洁性生活史。近2周来感乏力,低热,咳嗽,全身不适。食欲差且体重下降。查体T37.3℃,颌下及腋下有多个淋巴结肿大,质软,无压痛,无粘连。首先应做什么检查
头孢噻吩钠的氯化钠等渗当量为0.24,配制2%.滴眼剂100ml需加多少克氯化钠
如图4-54所示,平面机构在图示位置时,杆AB水平而杆OA铅直,若B点的速度vB≠0,加速度aB=0。则此瞬时杆OA的角速度、角加速度分别为()。
投标人的投标报价工作中,考虑不妥的是()。
(2014年真题)幼儿难以理解反话的含义,是因为幼儿理解事物具有()。
简述税负转嫁的基本形式及影响税负转嫁的主要因素。
西汉末年,某地一男子偷盗他人一头牛并贩卖到外乡,回家后将此事告诉了妻子。其妻隐瞒未向官府举报。案发后,该男子受到惩处。依照汉代法律,其妻的行为应()。
Thefollowingscenarioappliestoquestions30,31,and32.Operatingsystemshaveevolvedandchangedovertheyears.Theearli
IEEE802.3的物理层协议10BASE-T规定从网卡到集线器的最大距离为()。
最新回复
(
0
)