首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b)使得f″(ξ)=g″(ξ).
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b)使得f″(ξ)=g″(ξ).
admin
2019-04-05
195
问题
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b)使得f″(ξ)=g″(ξ).
选项
答案
由所证结论f″(ξ)=g″(ξ)易想到构造辅助函数F(x)=f(x)一g(x),且要对F(x)两次使用罗尔定理,为此要找到F(x)的三个不同的零点. 证 因f(x),g(x)在(a,b)上连续,不妨设存在x
1
≤x
2
(x
1
,x
2
∈[a,b])使f(x
1
)=M=g(x
2
),其中M为f(x),g(x)在[a,b]上相等的最大值.令F(x)=f(x)一g(x),若x
1
=x
2
,令η=x
1
,则F(η)=f(x
1
)一g(x
1
)=M—M=0.若x
1
<x
2
,因 F(x
1
)=f(x
1
)一g(x
1
)=M—g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)=f(x
2
)一M≤0. 又F(x)在[a,b]上连续,由介值定理知,存在η∈(x
1
,x
2
)[*](a,b),使F(η)=0. 由题设有F(a)=f(a)一g(a)=0,F(b)=f(b)一g(b)=0.对F(x)分别在[a,η]、[η,b]上使用罗尔定理得到:存在ξ
1
∈(a,η),ξ
2
∈(η,b),使F′(ξ
1
)=0,F′(ξ
2
)=一0.又因F′(x)可导,对F(x)在[ξ
1
,ξ
2
]上使用罗尔定理得到:存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使F″(ξ)=0, 即f″(ξ)=g″(ξ).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5XV4777K
0
考研数学二
相关试题推荐
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
证明:χ-χ2<ln(1+χ)<χ(χ>0).
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
随机试题
乙状结肠扭转除乙状结肠外最常见的发生部位是
国家开发银行的主要业务有()。
临床上急性化脓性根尖周炎的诊断可分为
可见匙状甲的疾病是
2011年5月15日,德国甲公司以中国乙公司侵犯其所享有的著作权为由,将其诉至人民法院。根据《涉外民事关系法律适用法》的规定,下列关于该案法律适用的说法错误的有哪些?()
我们党的最大政治优势是密切联系群众,党执政后的最大危险是()。
下面四个水坝中,能承受水压最大的是____。
AproposedRussianbanonEuropeanUnionmeatexportscouldjeopardizeRussia’saspirationstojointheWorldTradeorganization
【B1】【B5】
A、5billion.B、50billion.C、500billion.D、5000billion.D
最新回复
(
0
)