首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: (M1,—M2,…,(—1)n—1Mn)是方程组的一个解向量。
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: (M1,—M2,…,(—1)n—1Mn)是方程组的一个解向量。
admin
2019-03-23
101
问题
设齐次线性方程组
的系数矩阵为A=
,设M
i
(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:
(M
1
,—M
2
,…,(—1)
n—1
M
n
)是方程组的一个解向量。
选项
答案
作n阶行列式 D
i
=[*],i=1,2,…,n—1。 因为D
i
的第一行与第i+1行是相同的,所以D
i
=0。 D
i
的第一行元素的代数余子式依次为M
1
,—M
2
,…,(—1)
n—1
M
n
,将D
i
按第一行展开,得 a
i1
M
1
+a
i2
(—M
2
)+ … +a
in
[(—1)
n—1
M
n
]=0,(i=1,2,…,n—1), 这说明(M
1
,—M
2
,…,(—1)
n—1
M
n
)满足第i(i=1,2,…,n—1)个方程,故它是方程组的一个解。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/3XV4777K
0
考研数学二
相关试题推荐
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知ξ1=(-3,2,0)T,ξ2=(-1,0,-2)T是方程组的两个解,则此方程组的通解是________.
判断下列函数的单调性:
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
已知某企业的总收益函数为R(Q)=26Q一2Q2一4Q3,总成本函数为C(Q)=8Q+Q2,其中Q表示产品的产量.求边际收益函数、边际成本函数以及利润最大时的产量.
随机试题
A.asfishdoesB.oilC.bytheUnitedStatesinthe19thcenturyD.shinesdayandnightE.onlyaverysmallpercentageF.a
Accordingtopsychologists(心理学家),allemotionisarousedwhenamanoranimalviewssomethingaseitherbadorgood.Whenapers
I’dliketointroduceyou______JamesStewart,thenewmanagerofourdepartment.
食物链可分为捕食食物链、腐屑食物链、______和混合食物链。
在教育史上,存在着不同身份和地位的人享有不同的受教育机会和权利的现象。这说明学制具有
关于卵巢,下列哪项是正确的
根据《建设工程价款结算暂行办法》(财建[2004]369号),包工包料的工程原则上预付款比例上限为()。
某证券投资基金某期期初未分配利润为300000元,其中,已实现200000元,未实现100000元。当期已实现为-10000元,未实现利润为一20000元,则期末可供分配利润为()。
城镇化是经济社会发展的必然趋势,也是工业化、现代化的重要标志。我国人口多、底子薄,发展很不平衡,推进城镇化的同时面对着实现经济增长、社会发展和解决人口众多、资源紧缺、环境脆弱、地区差异大等诸多问题和矛盾。这就决定我们必须走中国特色城镇化道路,按照()、
A、It’sanunwisedecision.B、Individualprojectsaremuchbetter.C、Thedecisionwilldefinitelyberejected.D、Manypeopletry
最新回复
(
0
)