首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(01年)设矩阵,已知线性方程组AX=β有解但不惟一,试求 (1)a的值; (2)正交矩阵Q,使QTAQ为对角矩阵.
(01年)设矩阵,已知线性方程组AX=β有解但不惟一,试求 (1)a的值; (2)正交矩阵Q,使QTAQ为对角矩阵.
admin
2021-01-25
107
问题
(01年)设矩阵
,已知线性方程组AX=β有解但不惟一,试求
(1)a的值;
(2)正交矩阵Q,使Q
T
AQ为对角矩阵.
选项
答案
(1)对方程组的增广矩阵[*]作初等行变换: [*] 由此可见 1)当a≠1且a≠-2时,r(A)=r([*])=3,方程组有惟一解; 2)当a=1时,r(A)=1,r([*])=2,方程组无解; 3)当a=-2时,r(A)=r([*])=2<3,方程组有无穷多解. 故a=-2满足题设条件. (2)由(1)知A=[*] 由|λE-A|=[*]=λ(λ-3)(λ+3)=0 得A的特征值为λ
1
=0,λ
2
=3,λ
3
=-3. 对于λ
1
=0,解方程组(0E-A)X=0,由 [*] 得对应的特征向量为α
1
=(1,1,1)
T
,单位化,得对应的单位特征向量为e
1
=[*]. 对于λ
2
=3,解方程组(3E-A)X=0,由 [*] 得对应的特征向量为α
2
=(1,0,-1)
T
.单位化,得对应的单位特征向量为e
2
=[*]. 对于特征值-3,解方程组(-3E-A)X=0,由 [*] 得对应的特征向量为e
3
=(1,-2,1)
t
,单位化,得对应的单位特征向量为e=[*]. 故所求的正交矩阵为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RAx4777K
0
考研数学三
相关试题推荐
设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
设矩阵A=,矩阵B满足AB+B+A+2E=0,则|B+E|=()
[2005年]已知齐次线性方程组(I)与方程组(Ⅱ)同解,求a,b,c的值.
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
[2012年]设A为三阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
[2016年]行列式
求下列函数的导数:(1)y=(3x2+1)3;(2)y=e-x2+x+1;(3)y=sin(4x+5);(4)y=cosx2;
(99年)设矩阵A=且|A|=-1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(-1,-1,1)T.求a,b,c及λ0的值.
设y=y(x)由2xy=确定,则曲线y=y(x)在x=0对应的点处的切线为.
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
随机试题
美术的社会功能主要体现在三个方面,即_______、_______、_______。[天津2019]
设总体X~N(μ,σ2),x1,x2,x3,x4为来自总体X的样本,且服从自由度为________的χ2分布.
在餐馆吃的食物所含的脂肪、糖和盐的成分都很高。
未取得卫生许可证从事食品生产经营活动的,予以取缔,没收违法所得,并处以下数量的罚款
铸造卡环进入倒凹的深度一般不宜超过
试述债权人的撤销权。[浙工大2020年研]
对于水闸下游翼墙的单侧扩散角,下列说法正确的是()。
证券公司营业部必须在营业场所发布股份转让的价格信息,转让日当天的价格信息发布内容有()。
商业银行设立的分支行是()。
校场口血案
最新回复
(
0
)