首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设平均收益函数和总成本函数分别为 AR=a-bQ, C=Q3-7Q2+100Q+50, 其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性时总利润最大.求总利润最大时的产量,并确定a,b的值.
设平均收益函数和总成本函数分别为 AR=a-bQ, C=Q3-7Q2+100Q+50, 其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性时总利润最大.求总利润最大时的产量,并确定a,b的值.
admin
2019-02-20
71
问题
设平均收益函数和总成本函数分别为
AR=a-bQ, C=
Q
3
-7Q
2
+100Q+50,
其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性
时总利润最大.求总利润最大时的产量,并确定a,b的值.
选项
答案
总利润函数 L(Q)=R-C=Q·AR-C=[*]Q
3
+(7-b)Q
2
+(n-100)Q-50, 从而使总利润最大的产量Q及相应的a,b应满足L’(Q)=0,MR=67及[*]即 [*] 解得a=111,Q=3或11,[*]或2. 由此得到两组可能的解:a=111,[*]Q=3与a=111,b=2,Q=11. 把第一组数据中的a,b代入得总利润函数 [*] 虽然L’(3)=0,L"(3)<0,即L(3)确实是L(x)的最大值,但L(3)<0,不符合实际,故应舍去. 把第二组数据中的a,b代入得总利润函数 L=[*]Q
3
+5Q
2
+11Q一50, 也有L’(11)=0,L"(11)<0,即[*]是L(x)的最大值,故a=111,b=2是所求常数的值,使利润最大的产量Q=11.
解析
平均收益函数AR=a-bQ其实就是价格P与销售量Q的关系式,由此可得总收益函数
R=Q·AR=aQ-bQ
2
,
需求函数(它是P=a-bQ的反函数)
进而可得需求价格弹性
转载请注明原文地址:https://www.kaotiyun.com/show/IFP4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=1,,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
验证函数f(x)=在[0,2]上满足拉格朗日中值定理,并求满足定理中的点ξ.
已知矩阵A=的特征值有重根,判断A能否相似对角化,并说明理由.
设某商品的最大需求量为1200件,该商品的需求函数Q=Q(p),需求弹性η=(η>0),p为单价(万元).(1)求需求函数的表达式;(2)求p=100厅元时的边际收益,并说明其经济意义.
设三阶实对称矩阵A的特征值分别为0,1,1,α1=是A的两个不同的特征向量,且A(α1+α2)=α2.(1)求参数a的值;(2)求方程组Ax=α2的通解;(3)求矩阵A;(4)求正交矩阵Q,使得QTAQ为对角矩阵.
设随机变量X的概率密度为试求Y=X2+1的密度函数.
设A,B为两个任意事件,证明:|P(AB)一P(A)P(B)|≤.
曲线y=【】
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设某厂生产甲、乙两种产品,产量分别为χ,y(千只),其利润函数为π=-χ2-4y2+8χ+24y-15,如果现有原料15000公斤(不要求用完),生产两种产品每千只都要消耗原料2000公斤,求1)使利润最大的产量χ,y和最大利润;2)如
随机试题
根据《水工混凝土施工规范》(SL677—2014)的规定,混凝土养护时问不宜少于()d。
大众化工集团早期的网站以销售化工产品为主,客户的日访问量10000人。现在拟扩展网站业务范围,增加向长期客户提供信息服务和行业报告等业务,估计访问量将成倍增长。请回答:如果扩展网站业务范围,可以增加哪些新的赢利模式?
以下关于放射源的运输哪种说法是正确的
降低混悬剂微粒沉降速度的有效措施是
关于肺气肿发生的机制,下列哪项不正确
丁香粉末中可见
不宜安排路基在雨期施工的选项有()。
“待处理财产损溢”账户期末()。
在商品零售价格调查中,如果挂牌价格与实际成立价格不一致,应采集()。
在制品管理不包括对在制品进行()。
最新回复
(
0
)