首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
admin
2017-06-26
94
问题
已知3阶矩阵A的第1行是(a,b,c),矩阵B=
(k为常数),且AB=O,求线性方程组Aχ=0的通解.
选项
答案
由于AB=O,知B的每一列都是方程组Aχ=0的解,因此Aχ=0至少有r(B)个线性无关解,所以Aχ=0的基础解系至少含r(B)个向量,即3-r(A)≥r(B),或r(A)≤3-r(B).又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,有1≤r(A)≤1,于是r(A)=1; 当k=0时,r(B)=1,有1≤r(A)≤2,于是r(A)=1或r(A)=2. 当k≠9时,由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Aχ=0的一个基础解系,于是Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数 当k=9时,分别就r(A)=2和r(A)=1讨论如下: 如果r(A)=2,则Aχ=0的基础解系由一个向量构成. 又因为[*]=0,所以Aχ=0的通解为 χ=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Aχ=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零, 所以Aχ=0等价于aχ
1
+bχ
2
+cχ
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Aχ=0的两个线性无关的解,从而η
1
,η
2
可作为Aχ=0的基础解系,故Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HjH4777K
0
考研数学三
相关试题推荐
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
向量组a1,a2,…,am线性无关的充分必要条件是().
设n阶矩阵A与B等价,则必有().
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设线性方程组(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中β1=,写出此方程组的通解.
设a1,a2,…,as均为n维列向量,A是m×n矩阵,则下列选项正确的是().
设向量组(Ⅰ)a1,a2,…,as,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i:1,2,…,s)均可以由a1,…,as线性表示,则().
设A为三阶方阵,A1,A2,A3表示A中三个列向量,则|A|=().
随机试题
下列各项中,属于内伤头痛发病原因的有
有关利多卡因的叙述,哪项是错误的()
注册会计师要证实甲公司在临近2010年12月31日签发的支票是否已登记入账,最有效的审计程序是()
孕妇患弓形虫病时治疗用首选药物是
川芎在酸枣仁汤中配伍的主要用意是
根据《消费者权益保护法》,消费者在购买商品时,不享有的权利是()。
以监督的时间为标准,行政法制监督可以分为()。
声环境影响评价工作等级划分依据是()。
下列关于股份和股票的表述,错误的是()。
在我国现阶段的所有制结构中,国有经济对经济发展起主导作用,这种主导作用主要体现在国有经济( )
最新回复
(
0
)