首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(04年)设n阶矩阵A= (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
(04年)设n阶矩阵A= (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
admin
2021-01-25
64
问题
(04年)设n阶矩阵A=
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
-1
AP为对角矩阵.
选项
答案
(1)当b≠0时,A的特征多项式为 |λE-A|=[*]=[λ-1(n-1)b](λ-(1-b)]
n-1
, 故A的特征值为λ
1
=1+(n-1)b,λ
2
=…=λ
n
=1-b. 对于λ
1
=1+(n-1)b,设对应的一个特征向量为ξ
1
,则 [*] 解得ξ
1
=(1,1,…,)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1-b,解齐次线性方程组[(1-b)E-A]χ=0,由 [*] 解得基础解系为ξ
2
=(1,-1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,-1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是A的特征向量. (2)当b≠0时,A有n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
…ξ
n
],则有 P
-1
AP=diag(1+(n-1)b,1-b,…,1-6). 当b=0时,A=E,对任意n阶可逆矩阵P,均有P
-1
AP=E.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xAx4777K
0
考研数学三
相关试题推荐
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
设矩阵A=,矩阵B满足AB+B+A+2E=0,则|B+E|=()
下列函数中是某一随机变量的分布函数的是
[2017年]设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记则下列结论不正确的是().
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
[2014年]证明n阶矩阵相似.
[2002年]设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是().
[2012年]设A为三阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)常数A;(Ⅱ)X的密度函数f(x);
设3阶行列式D3的第2行元素分别为1、-2、3,对应的代数余子式分别为-3、2、1,则D3=_______
随机试题
海洋公司与顺利公司签订水路货物运输合同,约定将货物从A地港口运输至B地港口。在实际运输过程中,货物首先由顺利公司运输至C地港口,再由风帆公司运输至D地港口,最后由远航公司运输至B地港口。海洋公司在卸货过程中,发现货物因水湿损毁。对此,下列选项不正确的是:(
【案例三】背景材料:某市政桥梁工程采用钻孔灌注桩基础;上部结构为预应力混凝土连续箱梁,采用钢管支架法施工。支架地基表层为4.5m厚杂填土,地下水位位于地面以下0.5m。主墩承台基坑平面尺寸为10m×6m,挖深为4.5m,采用9
【背景资料】某分项工程包含A、B、C三个工序,施工单位在进行该分项工作时,将作业面划分为三个施工段组织流水施工作业。各工序在各施工段所消耗的工作时间如表1(时间单位:d)所示。在每个施工段上,A工序与B工序之间存在2d的技术间歇,而
征收与征用的适用对象不同,主要体现为()。
合作(山西省)
考试对于()相当于()对于登机
公开市场操作的前提条件之一为金融市场是全国性的、独立性的,可操作证券种类齐全,且具有一定规模。()
属于雨果的作品的是()。
VolcanoesGeologistshavebeenstudyingvolcanoesforalongtime.Thoughtheyhavelearnedagreatdeal,theystillhaven
A—TOPStoriesB—E-newslettersC—CurrentSpecialD—What’sNewE—Edito
最新回复
(
0
)