首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组α1=(1,1,1,2)T,α2=(3,a+4,2a+5,a+7)T,α3=(4,6,8,10)T, (1)求向量组α1,α2,α3,α4的秩及其一个极大线性无关组; (2)若β=(0,1,3,6)T不能由α1,α2,α3,α4线
设有向量组α1=(1,1,1,2)T,α2=(3,a+4,2a+5,a+7)T,α3=(4,6,8,10)T, (1)求向量组α1,α2,α3,α4的秩及其一个极大线性无关组; (2)若β=(0,1,3,6)T不能由α1,α2,α3,α4线
admin
2017-06-14
52
问题
设有向量组α
1
=(1,1,1,2)
T
,α
2
=(3,a+4,2a+5,a+7)
T
,α
3
=(4,6,8,10)
T
,
(1)求向量组α
1
,α
2
,α
3
,α
4
的秩及其一个极大线性无关组;
(2)若β=(0,1,3,6)
T
不能由α
1
,α
2
,α
3
,α
4
线性表出,求a,b的值;
(3)若任何4维向量均可由α
1
,α
2
,α
3
,α
4
,β线性表出,求a,b的值.
选项
答案
设x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β,对(α
1
,α
2
,α
3
,α
4
,β)作初等行变换,有 [*] (1)当[*]时,秩r(α
1
,α
2
,α
3
,α
4
)=2,极大线性无关组是α
1
,α
2
(不唯一,也可以是α
1
,α
3
或α
1
,α
4
); 当a=-1时,秩r(α
1
,α
2
,α
3
,α
4
)=3,极大线性无关组是α
1
,α
3
,α
4
(或α
2
,α
3
,α
4
); 当[*]a≠-1时,秩r(α
1
,α
2
,α
3
,α
4
)=3,极大线性无关组是α
1
,α
2
,α
4
(或α
1
,α
3
,α
4
或α
2
,α
3
,α
4
). (2)方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β无解,也就是β不能由α
1
,α
2
,α
3
,α
4
线性表出,此时条件为:[*]或b≠1. (3)任一个4维向量γ可由α
1
,α
2
,α
3
,α
4
,β线性表出的充分必要条件是秩r(α
1
,α
2
,α
3
,α
4
,β)=4,即[*]且b≠1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/vZu4777K
0
考研数学一
相关试题推荐
证明方程lnx=x-e在(1,e2)内必有实根.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
将长度为1m的木棒随机地截成两段,则两段长度的相关系数为___________.
设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
判断下列函数的单调性:
随机试题
麻痹性肠梗阻时仍有阵发性腹部绞痛的临床表现。()
肺热燥咳选用
可能对上市公司股票交易价格产生较大影响的重大事件,不包括( )。
根据契税法律制度的规定,下列行为中,应征收契税的是()。
以下属于《产品质量法》适用范围的产品有()。
无违约息票债券收益率曲线信息如下:3年期年息票利率10%(按年付)面值为1000元,计算无违约债券价值。
在WindowsXP中,硬件抽象层是一个内核模式的模块。它提供了针对Windows当前运行所在硬件平台的低层接口。在WindowsXP运行时,硬件抽象层的功能主要由SYSTEM32文件夹中的文件______.dll提供。
Doyouthinkthispresentis______foralittleboy?
Designatingthisbook(HandbookofPersonalityPsychology)a"handbook"isatonceaccurateandpossiblyunfortunate.Handbooks
Theanswermust______findingnewsourcesofenergy.
最新回复
(
0
)