首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求 A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求 A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
admin
2014-04-23
70
问题
设A是n阶矩阵,A的第i行、第i列的元素a
ii
=i.j,求
A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
选项
答案
由A的特征多项式[*]故A有特征值.[*]当λ
1
=λ
2
=…=λ
n-1
=0时,方程组(λE一A)x=0就是方程组Ax=0,其同解方程组是x
1
+2x
2
+…+nx
n
=0,解得对应的线性无关特征向量为ξ
1
=[一2,1,0,…,0]
T
,ξ
2
=[一3,0,1,0,…,0]
T
,…,ξ
n-1
=[一n,0,…,0,1]
T
.当[*]时,(λ
n
E—A)x=0,对系数矩阵作初等行变换,得 [*][*] 方程组的同解方程组为[*]得对应的特征向量为ξ
n
=[1,2,…,n]
T
.从而知A有n个线性无关特征向量,A~A,取 [*]则 [*] 法二 (I)由题设条件[*]中第i行元素是第1行的i倍.故有[*]其中α=[1,2,…,n]
T
≠0.故r(A)=1. (Ⅱ)因A
2
=(αα
T
)(αα
T
)=α(α
T
α)α
T
=(α
T
α)A=[*],故知A的特征值为0,[*]当λ=0时,对应的特征向量满足Ax=αα
T
x=0,因α
T
α.[*] 在方程αα
T
x=0两边左乘α
T
.得 α
T
(αα
T
x)=(α
T
α)α
T
x=0。得α
T
x=0.当α
T
x=0时,两边左乘α,得αα
T
x=0,故方程组为αα
T
x=0与α
T
x=0是同解方程组.只需解方程组α
T
x=0,解得线性无关的特征向量为ξ
1
=[一2,1,0,…,0]
T
,ξ
2
=[一3,0,1,0,…,0]
T
,…,ξ
n-1
=[一n,0,…,0.]
T
.又[*]故A有一个非零特征值[*]当[*]时,由(λ
n
E—A)X=(α
T
αE—αα
T
)x=0。由观察知,x=α时,有(α
T
αE一αα
T
)α=(α
T
α)α=(αα
T
)α=(α
T
α)α=α(α
T
α)=0,故α=[1,2,…,n]
T
=ξ
n
是对应[*]的特征向量.即A有n个线性无关的特征向量,A能相似于对角阵.(下同方法一)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/UN54777K
0
考研数学一
相关试题推荐
已知点A与B的直角坐标分别为(1,0,0)与(0,1,1),线段AB绕z轴旋转一周所成的旋转曲面为S,求由S及平面z=0,z=1所围成的立体体积.
举例说明下列各命题是错误的:若向量组a1,a2,…,am,是线性相关的,则a1可由a2,a3,…,am线性表示.
求曲线上对应于t=π/6点处的法线方程.
设A为3阶矩阵,Ax=0有非零解,α,β为不成比例的三维列向量,且Aα=2β,Aβ=2α,则|A+3E|=________________.
设y0(x)为微分方程y"+py’+qy=2e-2x满足y0(0)=0,y’0(0)=1的特解,且λ1=-1为其中一个特征值,该微分方程的通解为().
若曲线y=x2+ax+b和2y=xy3-x2在点(1,-1)处相切,其中a,b是常数,则()
在变力F=yzi+zxj+xyk的作用下,质点由原点O沿直线运动到椭球面上第一卦限的点M(x0,y0,z0),问当x0,y0,z0取何值时,力F所做的功W最大?并求出W的最大值.
X与Y的联合概率分布
求展为x-2的幂级数,并指出其收敛域.
随机试题
休克患者出现弥散性血管内凝血(DIC);征象时应使用
预防白喉常用的疫苗是
关于行政诉讼中的证据保全申请,下列哪一选项是正确的?(2007年试卷二第45题)
经济学家的环境观点就是要()。
关于建筑业增值税计算办法的说法,正确的是()。
基尼系数是衡量一个国家贫富差距的标准。若设G为基尼系数,G的数值范围为()。
阻抗的本质是()。
决定具有权威性、指导性、()和长远性的特点。
用于在一定范围内公布应当遵守或周知的事项的公文文种是()。
Ifirstbecameawareoftheunemploymentproblemin1928.AtthattimeIhadjustcomebackfromBurma,whereunemploymentwaso
最新回复
(
0
)