首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2021-02-25
116
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),其中α
1
,α
2
,α
3
,α
4
均为4维列向量,且α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
解法1:由α
2
,α
3
,α
4
线性无关和α
1
=2α
2
-α
3
知矩阵A的秩为3,因此Ax=0的基础解系中只有一个解向量. 由α
1
-2α
2
+α
3
+0α
4
=0得(α
1
,α
2
,α
3
,α
4
)[*],即齐次线性方程组Ax=0的基础解系为[*],再由 [*] 知[*]为非齐次线性方程组Ax=β的一个特解,于是Ax=β的通解为 [*] 解法2:令[*]得 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
将α
1
=2α
2
-α
3
代入上式,整理后得 (2x
1
+x
2
-3)α
2
+(-x
1
+x
3
)α
3
+(x
4
-1)α
4
=0. 由α
2
,α
3
,α
4
线性无关,知 [*] 解此方程组得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ua84777K
0
考研数学二
相关试题推荐
设u=u(χ,y)有二阶连续偏导数,证明:在极坐标变换χ=rcosθ,y=rsinθ下有
设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c是唯一的.
设矩阵A=的特征值之和为1,特征值之积为-12(b>0).(1)求a、b的值;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
随机试题
下列__________是在重复测量中保持恒定小变或按亓丁预见的方式变化的
欧洲货币贷款协议中贷款人增订的保护自己利益的特殊条款是()
A.肝B.肾C.脾D.小肠腹部开放性损伤中,最常受损的脏器是
8个月女婴。5天来频咳、喘憋、持续高热。查体:体温39.5℃,精神萎靡,嗜睡与烦躁交替,口周发绀,两肺呼吸音粗,可闻少量干啰音,X线胸片可见右下肺大片状阴影。血白细胞5×109/L,临床诊断考虑为( )。
银行存款日记账每一账页登记完毕结转下页时,结计“过资页”的合计数应当是()的发生额合计数。
银行要做好品牌营销,()等要素十分重要。
与红色反线标识长度等宽的是()。
每个学生在所属的班集体中都有一定的权利和义务,都能找到适合自己的角色与活动。因此,班集体有利于训练学生的()。
2006年10月某市人民检察院以宏发经济发展公司和该市国家税务局城区中心分局犯逃税罪起诉到该市中级人民法院。该市中级人民法院经审理查明:市国家税务局城区中心分局在与宏发经济发展公司共谋后决定为宏发经济发展公司偷税提供方便,宏发经济发展公司在其法定代表人张某
Readthearticlebelow.Choosethebestsentencefromthelistonthenextpagetofilleachofthegaps.Foreachgap(1
最新回复
(
0
)