首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且 试证:(Ⅰ)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且 试证:(Ⅰ)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
admin
2019-07-28
97
问题
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且
试证:(Ⅰ)存在
,使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
选项
答案
(Ⅰ)只需作出辅助函数φ(x)=f(x)一x,利用介值定理证之; (Ⅱ)对于中值等式f′(ξ)一λf(ξ)=0,常作辅助函数F(x)一f(x)e
-λx
证之.将待证等式右边的1看成ξ′,则待证等式可化为 f′(ξ)一ξ′一λ[f(ξ)一ξ]=[f(ξ)一ξ]′一λ[f(ξ)一ξ]. 于是易想到作辅助函数 F(x)=e
-λx
[f(x)一x], 利用罗尔定理证之. 证 (Ⅰ)令φ(x)=f(x)一x.则φ(x)在[0,1]上连续,又 [*] 故由介值定理知,存在[*],使得 φ(η)一f(η)一η=0, 即f(η)=η. (Ⅱ)设 F(x)=e
-λx
φ(x)=e
-λx
[f(x)一x], 则F(x)在[0,η]上连续,在(0,η)内可导,且 F(0)=0,F(η)=e
-λη
φ(η)=0, 即F(x)在[0,η]上满足罗尔定理的条件,故存在ξ∈(0,η),使得F′(ξ)=0,即 e
-λξ
{f′(ξ)一λ[f(ξ)一ξ]一1)=0, 从而 f′(ξ)一λ[f(ξ)一ξ]=1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xXN4777K
0
考研数学二
相关试题推荐
关于函数y=f(x)在点x0的以下结论正确的是()
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+
=_______.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数.求φ’’(y).
设函数f(x)在(-∞,+∞)内连续,其导数的图形如右图,则f(x)有().
求圆弧x2+y2=a2绕y轴旋转一周所得球冠的面积.
(90年)已知函数f(x)具有任意阶导数,且f’(x)=[f(x)]2.则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是
随机试题
下列关于片剂的说法,错误的是()。
关于CT原始数据的描述,不正确的是
诊断首先考虑可加重症状的药物
基金职业道德教育的途径不包括()。
涉外接待的准备工作包括()
PDCA循环法是将①计划、②执行、③检查、④处理四个阶段周而复始地循环进行计划管理的一种方式。将四个阶段按顺序排列正确的是()。
人本主义心理学按照学习对学习者的个人意义,将学习分为()。
中国古代的“五行”指的是东、南、西、北、中。()
(1)甲发奋地读书(2)甲在重点大学学习(3)成绩太差离开重点大学(4)在普通大学插班(5)甲以优异的成绩毕业
2010年12月5日,兴业银行急需20000万元资金应付客户提款,由于流动性不足,只能用即将于2011年3月1日到期的票据向中央银行进行再贴现,中央银行再贴现率为5.1%,计算兴业银行需要拿多少数额的票据去中央银行办理贴现?(小数点后保留4位)
最新回复
(
0
)