首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0, 证明:(Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0; (Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
设f(x)∈C[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0, 证明:(Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0; (Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
admin
2019-07-01
52
问题
设f(x)∈C[a,b]且f(x)为单调增函数,若f(a)<0,∫
a
b
f(x)dx>0,
证明:(Ⅰ)存在ξ∈(a,b),使得∫
a
ξ
f(x)dx=0;
(Ⅱ)存在η∈(a,b),使得∫
a
η
f(x)dx=f(η).
选项
答案
(Ⅰ)由积分中值定理,∫
a
b
f(x)dx=f(c)(b一a)>0,其中c∈[a,b],显然f(c)>0且c∈(a,b].因为f(a)f(c)<0,所以由零点定理,存在x
0
∈(a,c),使得f(x
0
)=0.再由f(x)单调增加得,当x∈[a,x
0
)时,f(x)<0;当x∈(x
0
,b]时,f(x)>0.令F(x)=∫
a
x
f(t)dt,显然F(x
0
)<0,F(B)>0,由零点定理,存在ξ∈(a,b),使得F(ξ)=0,即∫
a
ξ
f(x)dx=0. (Ⅱ)令φ(x)=e
-x
∫
a
x
f(t)dt,φ(a)=φ(ξ)=0,由罗尔定理,存在η∈(a,ξ)[*](a,b),使得φ’(η)=0,而φ’(x)=e
-x
[f(x)一∫
a
x
f(t)dt]且e
-x
≠0,故∫
a
η
f(x)dx=f(η).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/uGc4777K
0
考研数学一
相关试题推荐
设齐次线性方程组的系数矩阵为A,且存在3阶方阵B≠O,使AB=O,则
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=___________.
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT.证明:对于正整数m,存在常数t,使Am=tm—1A,并求出t;
已知3阶实对称矩阵A的特征值为6,3,3,α1=(1,1,1)T是属于特征值λ1=6的特征向量,求矩阵A.
设有线性方程组 设a1=a3=k,a2=a4=一k(k≠0)时,β1=(一1,1,1)T,β2=(1,1,一1)T是方程组的两个解,写出此方程组的通解.
设某种元件的寿命为随机变量且服从指数分布,这种元件可用两种方法制得,所得元件的平均寿命分圳为100和150(小时),而成本分别为c、和2c元,如果制得的元件寿命不超过200小时,则须进行加工,费用为100元,为使平均费用较低,问c取值时,用第2种方法较好?
设随机变量X在区间(-1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数.
设平面区域D由曲线()
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明:(1)aij=AijATA=E,且|A|=1;(2)aij=-AijATA=E,且|A|=-1.
设的收敛半径、收敛区间与收敛域.
随机试题
先秦时期,对“名”、“实”问题提出自己看法的思想家有
控制性超排卵方案中超短方案是指
肝性脑病并发碱中毒时,应首选
为确定肝脓肿穿刺点或手术引流进路,首选的辅助检查方法是
ECC合同通过早期警告和补偿事件等条款的设置,在很大程度上体现了合作伙伴管理所倡导的()的管理机制及合作共赢的理念。
为保证会计账簿记录的正确性,会计人员编制记账凭证时必须依据()。
一个正方形的边长增加20%后,它的面积增加百分之几?()
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则=()
下列关于栈的叙述正确的是()。
A、Shecanhearthemcryingveryloudlyatthezoo.B、Shehasheardthempantingandwastolditwaslaughter.C、Shehasreadabo
最新回复
(
0
)