首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012试题,三) (1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间内有且仅有一个实根; (2)记(1)中的实根为xn,证明存在,并求此极限.
(2012试题,三) (1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间内有且仅有一个实根; (2)记(1)中的实根为xn,证明存在,并求此极限.
admin
2013-12-18
87
问题
(2012试题,三)
(1)证明方程x
n
+x
n-1
+…+x=1(n为大于1的整数),在区间
内有且仅有一个实根;
(2)记(1)中的实根为x
n
,证明
存在,并求此极限.
选项
答案
(1)证明:令f(x)=x
n
+x
n-1
+…+x一1,则[*]f(1)=1
n
+1
n-1
+…+1—1=n一1>0,因此由零点定理知f(x)=0在[*]内至少有一实根.又f
’
(x)=nx
n-1
+(n一1)x
n-2
+…+2x+1>0,[*]故f(x)在[*]上是单调递增函数,所以f(x)=0在[*]内有且仅有一个实根. (2)由题设,有f(x
n
)=0,又f
’
(x)=nx+(n一1)x
n-2
+…+2x+1>1[*]又设f(x)=f(x)+1=x
n
+x
n-1
+…+x,则F(x
n
)=1则有[*][*]由夹逼定理,有[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/t234777K
0
考研数学二
相关试题推荐
[2006年]设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解.求A及[A-(3/2)E]6.
[2006年]设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解.求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ;
(90年)已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
(2001年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
(2007年)设二元函数计算二重积分,其中D={(x,y)||x|+|y|≤2).
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
(01年)设u=f(χ,y,z)有连续的一阶偏导数,又函数y=y(χ)及z=z(χ)分别由下列两式确定:eχy-χy=2,eχ=求.
(2008年)设银行存款的年利率为r=0.05,并依年复利计算。某基金会希望通过存款A万元实现第一年提取19万元,第二年提取28万元,…,第n年提取(10+9n)万元,并能按此规律一直提取下去,问A至少应为多少万元?
(2011年)求不定积分
(2005年)从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P{Y=2}=_______。
随机试题
淋巴结能滤过淋巴液主要是由于
A、睾丸鞘膜积液B、交通性鞘膜积液C、睾丸肿瘤D、腹股沟斜疝E、精索静脉曲张患者,男,22岁。发现右侧阴囊内鸡蛋大小肿块半年,无痛,平卧后无缩小。扪之有囊性感,透光试验(+)。最可能的诊断为()
患儿,女,1岁,生后3个月起青紫渐加重,活动后气急,查体,生长发育明显落后,口唇、鼻尖、耳垂、指趾青紫明显,伴杵状指(趾),胸骨左缘闻及Ⅲ级收缩期杂音,肺动脉第二音减弱。该患儿的治疗最终要采取( )。
患者29岁,咳大量脓痰并反复咯血12年,多次住院治疗。体检:右下肺湿啰音,心率90/min,心律齐。为排除Kertagener综合征下列哪项最有意义
患者,男,52岁。近2个月来大便次数增多,有肛门坠胀感及里急后重,大便变细。常有黏液血便,经抗生素治疗症状可缓解,但不久又复发,且呈进行性加重。若经病理检查证实为直肠腺癌,肿瘤下缘距肛门约12cm,肿块直径约4cm。最佳手术方式是
用阿托品阻断M受体可致
大体积混凝土工程不能选用水化热大的水泥,如硅酸盐水泥。()
设随机变量X的概率分布为则a=()。
经常项目是本国与外国之间经常发生的项目,又分为()等。
Thewriter’sgeneralattitudetowardsFreudiantheoryaboutrisk-takingbehavioris______.Theword"predispose"inparagraph
最新回复
(
0
)